第四章解非线性方程的迭代法精选PPT.ppt

上传人:石*** 文档编号:88392784 上传时间:2023-04-26 格式:PPT 页数:34 大小:2.39MB
返回 下载 相关 举报
第四章解非线性方程的迭代法精选PPT.ppt_第1页
第1页 / 共34页
第四章解非线性方程的迭代法精选PPT.ppt_第2页
第2页 / 共34页
点击查看更多>>
资源描述

《第四章解非线性方程的迭代法精选PPT.ppt》由会员分享,可在线阅读,更多相关《第四章解非线性方程的迭代法精选PPT.ppt(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第四章解非线性方程的迭代法第1页,此课件共34页哦 ,得到新的有根区间a1,b1,设(x)在区间a,b上连续且(a)(b)0.0abyxy=(x)记a0=a,b0=b,计算若|(x0)|,则取x0;否则,若(a0)(x0)0,取a1=x0,b1=b0 而且有根区间a1,b1长度是有根区间a0,b0长度的一半,x0再对有根区间a1,b1重复上面运算,即:计算若|(x1)|,则取x1;否则,若(a1)(x1)0,取a2=x1,b2=b1,得到新的有根区间a2,b2.x1 而且有根区间a2,b2长度是有根区间a1,b1长度的一半.一直进行下去,直到求出有根区间ak,bk.第2页,此课件共34页哦此时

2、,再计算 或者有|(xk)|,或者有可见,k趋向无穷大时,xk收敛于.而且,若要|xk-|,只要此时可取近似根xk.在计算过程中,若出现|(xk)|1,或bk-ak2.则可取xk作为方程(x)=0的近似根,终止运算.例例1 用二分法求x3+4x-10=0在区间1,2内根的近似值,并估计误差.第3页,此课件共34页哦 解解 这里(x)=x3+4x-7,(1)(2)=-180,所以(x)=0在1,2区间有唯一根.取x0=1.5,由于(x0)=2.375,得新有根区间1,1.5,x1=1.25,由于(x1)=-0.0468,得新有根区间1.25,1.5,x2=1.375,由于(x2)=1.0996,

3、得新有根区间1.25,1.375,x3=1.3125,由于(x3)=0.511,得新有根区间1.25,1.3125,.x9=1.254882813,得有根区间1.254882813,1.255859375,x10=1.255371094,(x10)=-0.000105285取x10=1.255371094作为方程根的近似值,且有 第4页,此课件共34页哦只需k5ln210-115.61.即需取x16.如果取精度=10-5,则要使 二分法要求函数在区间a,b上连续,且在区间两端点函数值符号相反,二分法运算简便、可靠、易于在计算机上实现。但是,若方程(x)=0在区间a,b上根多于1个时,也只能求出

4、其中的一个根。另外,若方程(x)=0在区间a,b有重根时,也未必满足(a)(b)0.而且由于二分法收敛的速度不是很快,一般不单独使用,而多用于为其他方法提供一个比较好的初始近似值.第5页,此课件共34页哦 2.1 简单迭代法的一般形式简单迭代法的一般形式2 简简 单单 迭迭 代代 法法 首先把方程(x)=0改写成等价(同解)形式 x=(x)(4.2)得到迭代序列xk,如果xk,则有=(),即是方程(x)=0的根.取一个合适的初始值x0,然后作迭代 xk+1=(xk),k=0,1,2,(4.3)这种求方程根的方法称为简单迭代法简单迭代法,或逐次逐次逼近法逼近法.其中(x)称为迭代函数迭代函数,式

5、(4.3)称为迭代格式迭代格式.若迭代序列xk 收敛,则称简单迭代法是收敛的简单迭代法是收敛的.第6页,此课件共34页哦 解解 改写原方程为等价方程 求方程x3-2x-3=0在1,2内的根.例例2 ,建立迭代格式如果取初值x0=1.9,计算得kxkkxk0123451.91.894536471.893521141.893332331.893297221.893290696789101.893289471.893289251.893289211.893289201.89328920第7页,此课件共34页哦 由计算结果有,x10=x9,因此可取x10=1.89328920.定义定义4.14.1 设

6、(x)为定义在区间I I上的函数,且对任何xI I,均有(x)I I,则称(x)为I I到自身上的映射到自身上的映射.方程也可改写成x=(x3-3)/2,建立迭代格式 xk+1=(x3k-3)/2 ,k=0,1,2,仍取初值x0=1.9,则有 x1=1.9295,x2=2.0917,x3=3.0760,x4=13.0529可见,xk,此迭代格式是发散的.2.2 简单迭代法的收敛条件简单迭代法的收敛条件 定义定义4.24.2 设(x)为I I到自身上的映射,且存在0L1,使对任何x1,x2I,I,有|(x2)-(x1)|L|x2-x1|,则称(x)为I I上的压缩映射压缩映射,L称为Lipsch

7、itzLipschitz常数常数.第8页,此课件共34页哦 若(x)为I上的压缩映射,则(x)在I上连续.定理定理4.24.2 若(x)为I到自身上的映射,且(x)C1(I),|(x)|L1,则(x)为I上的压缩映射.证证 对任意x1,x2I,有|(x2)-(x1)|=|()|x2-x1|L|x2-x1|定义定义4.34.3 若(x)为I到自身上的映射,且I I满足,=(),则称为(x)的不动点不动点.定理定理4.34.3 若(x)为I上的压缩映射,则(x)在I I上存在唯一的一个不动点,且对任何x0I,由迭代格式 xk+1=(xk),k=0,1,2,产生的序列xk收敛于(x)的不动点.定理定

8、理4.1第9页,此课件共34页哦 证证 不妨设I=a,b,作函数(x)=(x)-x,由于xI时,(x)I,则(a)=(a)-a0,(b)=(b)-b0,由(x)的连续性,必存在I,使()=()-=0,即=(),就是(x)的不动点.若,I均为(x)的不动点,则有|-|=|()-()|L|-|-|所以只能=,即(x)在I上仅有一个不动点.对任意x0I,有x1=(x0)I,递推得xkI,设是(x)的不动点,则|xk+1-|=|(xk)-()|L|xk-|L2|xk-1-|Lk+1|x0-|所以xk.第10页,此课件共34页哦 若=(),而在I=-,+上(x)满足|(x)-()|L|x-|这里L1为L

9、ipschitz常数,则当x0-,+时,有 (1)由迭代xk+1=(xk)产生的迭代序列xkI;推论推论 若(x)C1a,b,且满足 1.a(x)b,xa,b;2.|(x)|L0,使对任何xI=-,+都有|(x)|L1.2.3 简单迭代法的误差分析与收敛阶简单迭代法的误差分析与收敛阶 推论推论 若=(),(x)在附近具有一阶连续导数,且|()|0,当x0I=-,+时,有 (1)由迭代xk+1=(xk)产生的迭代序列xkI;(3)是I上(x)的唯一不动点.定理定理4.54.5 若(x)为I上压缩映射,则x0I,由迭代 xk+1=(xk),k=0,1,2,产生的迭代序列xk满足:第12页,此课件共

10、34页哦 证证|xk+1-xk|=|(xk)-(xk-1)|L|xk-xk-1|xk+1-|=|(xk)-()|L|xk-|xk+1-xk|=|(xk+1-)-(xk-)|xk-|-|xk+1-|(1-L)|xk-|由误差估计式可见,对任一0,要使|xk-|,只要第13页,此课件共34页哦 求方程xex-1=0在0.5附近的根,精度要求=10-3.解解 可以验证方程xex-1=0在区间0.5,0.6内仅有一个根.例例3 改写方程为x=e-x,建立迭代格式 由于(x)=e-x,在0.5,0.6上有|(x)|e-0.50.61则称序列xk是p p阶收敛的阶收敛的,称p是收敛阶收敛阶,C是渐近误差常

11、数渐近误差常数.p=1称为线性收敛线性收敛;p1称超线性收敛超线性收敛;p=2称平方收敛平方收敛.设(x)充分光滑,由于|ek+1|=|xk+1-|=|(xk)-()|=|(k)|ek|所以,当()0时,有第16页,此课件共34页哦于是此时,迭代法是m阶收敛的.所以,当()0时,简单迭代法只具有线性收敛.设()=()=(m-1)()=0,但(m)()0,由于|ek+1|=|xk+1-|=|(xk)-()|所以 下面介绍AitkenAitken加速算法加速算法,此方法可对线性收敛的简单迭代法起到加速作用,而且可应用于其它数值方法中。第17页,此课件共34页哦假设(1)(2),则有 由于 xk+1

12、-=(1)(xk-)xk+2-=(2)(xk+1-)即 (xk+1-)2(xk-)(xk+2-)xk+12-2xk+1+2xkxk+2-(xk+xk+2)+2 解得 第18页,此课件共34页哦则,序列注意,如果第k步发生zk-2yk+xk=0,就终止计算,取xk.如果记 要比序列x k更快地收敛于,可构造如下的Aitken加速算法:例例4 分别用简单迭代法和Aitken加速算法求方程x=1.6+0.99cosx在x0=/2附近的根.(=1.585471802)第19页,此课件共34页哦取x0=/2,计算结果如下k简单迭代法kAitken算法xk|xk-xk-1|xk|xk-xk-1|01234

13、1.570801.61.571091.599711.571380.02920.028910.028620.028330121.57079631.585472581.585471800.014676280.00000078第20页,此课件共34页哦 NewtonNewton迭代法迭代法是求方程根的重要方法之一,其最大优点是在方程的单根附近具有平方收敛,而且Newton迭代法还可用来求方程的重根、复根及非线性方程组.3 Newton 迭代法迭代法 3.1 Newton迭代公式迭代公式 设(x)在有根区间a,b上二阶连续可微,x0是根的某个近似值,因为取(x)(x0)+(x0)(x-x0),方程(x

14、)=0近似为 (x0)+(x0)(x-x0)=0若(x0)0,其解为第21页,此课件共34页哦得到根的新的近似值x1,一般地,在xk附近线性化方程为 (xk)+(xk)(x-xk)=0设(xk)0,其解为迭代格式(4.4)称为 NewtonNewton迭代法迭代法.xyox0y=(x)x1x2直线 y=(x0)+(x0)(x-x0)就是 y-(x0)=(x0)(x-x0)Newton迭代法也叫切线法切线法.第22页,此课件共34页哦 Newton迭代法相当于取迭代函数3.2 Newton迭代法的收敛性迭代法的收敛性的简单迭代法.因为 如果是(x)=0的单根,即()=0,但()0,则有()=0,

15、从而可知Newton迭代法在根附近是收敛的.因为所以第23页,此课件共34页哦于是有可见,Newton迭代法至少是平方收敛的.若记M2=max|(x)|,m1=min|(x)|.则有|xk+1-|C|xk-|2因此 C|xk+1-|(C|xk-|)2 (C|xk-1-|)4 可见,当C|x0-|1,即|x0-|1/2max|(x)|时,简化Newton迭代法对x0I收敛.通常取M=(x0).简化Newton迭代法一般只具有线性收敛.2.2.割线法割线法 因为第27页,此课件共34页哦oxyy=(x)x0 x1x2x3 为了简化计算(xk),采用迭代格式称为割线割线法法.若(x)在根附近二次连续

16、可微,且()0,可以证明割线法是收敛的,且有割线法收敛的阶为 3.3.计算重根的计算重根的NewtonNewton迭代法迭代法第28页,此课件共34页哦 称是方程(x)=0的m重根,是指(x)=(x-)m h(x),其中h(x)在x=处连续且h()0,若h(x)在处充分可微,则 ()=()=(m-1)()=0,(m)()0由于可见,恰是方程 的单根.应用Newton迭代法可得:称之为带参数带参数m m的的NewtonNewton迭代法迭代法,它是求方程(x)=0的m重根的具有平方收敛的迭代法.再看函数:第29页,此课件共34页哦可见,恰是方程u(x)=0的单根,应用Newton迭代法有这是求方

17、程(x)=0重根的具有平方收敛的迭代法,而且不需知道根的重数.例例6 6 利用Newton迭代法求方程 (x)=x4-8.6x3-35.51x2+464.4x-998.46=0的正实根.o ox xy2 24 46 68 81010y=f(x)解 y=(x)的图形为可见,方程在x=4附近有一个重根,在x=7附近有一单根.第30页,此课件共34页哦利用Newton迭代法求方程的单根,取初值x0=7,精度=10-6,计算可得:x4=7.34846923,x5=7.348469229,|x5-x4|=0.000000001可见,迭代5次就得到满足精度的解x5=7.348469229利用求重根的New

18、ton迭代法(4.5)求重根,取x0=4,可得 x3=4.300000,x4=4.300000,|x4-x3|=0.000000006然而若用一般的Newton迭代法(4.4)求重根,取x0=4,虽然也收敛,却需要迭代19次才能得到满足精度要求的解.可见,迭代4次就得到满足精度的解x4=4.300000.利用带参数2的Newton迭代法,取x0=4可得x2=4.2999898.第31页,此课件共34页哦练习题练习题第第104页页 习题习题44-1,4-3,4-4,4-5,4-7,4-8,第32页,此课件共34页哦练习题练习题第第102页页 习题习题44-10,4-12,4-13,第33页,此课件共34页哦课间休息课间休息第34页,此课件共34页哦

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 资格考试

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁