定积分概念、求解 (2).ppt

上传人:hyn****60 文档编号:88332983 上传时间:2023-04-25 格式:PPT 页数:55 大小:3.57MB
返回 下载 相关 举报
定积分概念、求解 (2).ppt_第1页
第1页 / 共55页
定积分概念、求解 (2).ppt_第2页
第2页 / 共55页
点击查看更多>>
资源描述

《定积分概念、求解 (2).ppt》由会员分享,可在线阅读,更多相关《定积分概念、求解 (2).ppt(55页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、定积分的概念abxyo曲边梯形的面积问题曲边梯形的面积问题求解曲边梯形面积的过程,求解曲边梯形面积的过程,可可概括为概括为“分割分割-取近取近似似-求和求和-取极限取极限”的步骤的步骤.将曲边梯形的底,即将曲边梯形的底,即a,b进行分割进行分割(用垂直于用垂直于x轴的直线轴的直线).).第一步第一步 分割;分割;曲边梯形的面积的解决思路:曲边梯形的面积的解决思路:a bxyo取出典型小区域,用矩形面积近似曲边梯形面积取出典型小区域,用矩形面积近似曲边梯形面积.第二步第二步 取近似;取近似;a bxyo用矩形面积近似用矩形面积近似用矩形面积近似用矩形面积近似小曲边梯形面积小曲边梯形面积小曲边梯形

2、面积小曲边梯形面积底底典型小区域面积典型小区域面积 a bxyo第三步第三步 求和;求和;矩形面积和与曲边梯矩形面积和与曲边梯形面积不相等形面积不相等有误差有误差有误差有误差将每个小曲边梯形的面积都用矩形近似,并将所将每个小曲边梯形的面积都用矩形近似,并将所有的小矩形面积加起来有的小矩形面积加起来.第四步第四步 取极限取极限.当对曲边梯形底的分割越来越细时,矩形面积之当对曲边梯形底的分割越来越细时,矩形面积之和越近似和越近似于于曲边梯形面积曲边梯形面积.a bxyo的极限值定积分的定义:定积分的相关名称:定积分的相关名称:叫做积分号,叫做积分号,f(x)叫做被积函数,叫做被积函数,f(x)dx

3、 叫做被积表达式,叫做被积表达式,x 叫做积分变量,叫做积分变量,a 叫做积分下限,叫做积分下限,b 叫做积分上限,叫做积分上限,a,b 叫做积分区间。叫做积分区间。说明:说明:(1)定积分是一个数值定积分是一个数值,它只与被积函数及积分区间有关,它只与被积函数及积分区间有关,而与积分变量的记法无关,即而与积分变量的记法无关,即baf(x)dx baf(x)dx-(3)二、定积分的几何意义:二、定积分的几何意义:Ox yab yf(x)xa、xb与 x轴所围成的曲边梯形的面积。当当f(x)0时,由时,由y f(x)、x a、x b 与与 x 轴所围成轴所围成的曲边梯形位于的曲边梯形位于 x 轴

4、的下方,轴的下方,x yOab yf(x)-S上述曲边梯形面积的负值。上述曲边梯形面积的负值。定积分的几何意义:定积分的几何意义:-S当当f(x)在区间在区间a,b上有正有负时上有正有负时,曲边梯形的面积曲边梯形的面积曲边梯形的面积的负值曲边梯形的面积的负值ab yf(x)Ox y探究探究:根据定积分的几何意义根据定积分的几何意义,如何用定积分表示图中阴影部分如何用定积分表示图中阴影部分的面积的面积?ab yf(x)Ox y定理定理例例1解解三三:定积分的基本性质定积分的基本性质 性质性质1.1.性质性质2.2.ab y=f(x)cOx y 定积分关于积分区间具有定积分关于积分区间具有可加性可

5、加性性质性质3.3.例2.用定积分表示图中四个阴影部分面积解:0000ayxyxyxyxf(x)=x2f(x)=x2-12f(x)=1ab-12f(x)=(x-1)2-1解:0000ayxyxyxyx-12ab-12f(x)=x2f(x)=x2f(x)=1f(x)=(x-1)2-1解:0000ayxyxyxyx-12ab-12f(x)=x2f(x)=x2f(x)=1f(x)=(x-1)2-1解:0000ayxyxyxyx-12ab-12f(x)=x2f(x)=x2f(x)=1f(x)=(x-1)2-1例3:解:xyf(x)=sinx1-1定积分的计算定积分计算定积分计算如何计算定积分?如何计算

6、定积分?定义很复杂,直接计算很困定义很复杂,直接计算很困难难.需要转换新的思路需要转换新的思路.根据几何意义,图不好画根据几何意义,图不好画定理定理牛顿牛顿-莱布尼茨公式莱布尼茨公式微积分基本定理微积分基本公式表明:微积分基本公式表明:求定积分问题转化为求原函数的问题求定积分问题转化为求原函数的问题例例1 求求 解解提示与分析:提示与分析:先看成不定积分问题,先看成不定积分问题,求出原函数求出原函数.例例2例如例如问题问题解决方法解决方法利用复合函数,设置中间变量利用复合函数,设置中间变量.过程过程令令第一换元法第一换元法考虑考虑到底该令哪个式子为到底该令哪个式子为u u一定要换积分上、下限一

7、定要换积分上、下限第一换元(凑微分)法常用的几种配元形式第一换元(凑微分)法常用的几种配元形式:解解例例4 计算计算说明说明:使用第一换元法的关键在于将使用第一换元法的关键在于将化为化为观察重点不同,所得结论形式不同观察重点不同,所得结论形式不同.例例5 计算计算解一解一提示与分析:提示与分析:用凑微分法求解用凑微分法求解.解二解二解三解三第第一一类类换换元元法法难难 求求 易易 求求第二换元积分法第第二二类类换换元元法法难难 求求 易易 求求 定积分的第二换元积分法应用换元公式时要注意应用换元公式时要注意:第第二二换换元元法法例例7 7计算计算解解 令令如何去掉根式?如何去掉根式?三角代换三角代换=0解解例例8 计算计算解解例例9 9 计算计算1 1 求求2 2 求求 练习 1 1 求求2 2 求求提示与分析:提示与分析:含有根式含有根式,可采用换元定积分可采用换元定积分,去去掉根号掉根号.面积怎么求?面积怎么求?面积怎么求?面积怎么求?元素法元素法元素法元素法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁