《浙江省衢州市教联盟体2023年中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省衢州市教联盟体2023年中考数学押题卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知数a、b、c在数轴上的位置如图所示,化简|a+b|cb|的结果是()Aa+bBacCa+cDa+2bc2九章算术中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则
2、分别叫做正数与负数,若气温为零上10记作+10,则3表示气温为()A零上3B零下3C零上7D零下73已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程x2bxc=0在1x3的范围内有两个相等的实数根,则c的取值范围是( )Ac=4 B5c4 C5c3或c=4 D5c3或c=44已知点,为是反比例函数上一点,当时,m的取值范围是( )ABCD5如图,已知直线l1:y=2x+4与直线l2:y=kx+b(k0)在第一象限交于点M若直线l2与x轴的交点为A(2,0),则k的取值范围是()A2k2B2k0C0k4D0k26计算|3|的结果是()A1 B5 C1 D57一枚质地均匀的骰子
3、,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有( )A1种B2种C3种D6种8我国古代数学著作孙子算经中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )ABCD9计算4(9)的结果等于A32B32C36D3610如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(1,3)、(4,1)、(2,1),将ABC沿一确定方向平移得到A1B1C1,点B的对应点B1的
4、坐标是(1,2),则点A1,C1的坐标分别是 ()AA1(4,4),C1(3,2)BA1(3,3),C1(2,1)CA1(4,3),C1(2,3)DA1(3,4),C1(2,2)11下列图形中,是中心对称图形但不是轴对称图形的是()ABCD12我国的钓鱼岛面积约为4400000m2,用科学记数法表示为()A4.4106 B44105 C4106 D0.44107二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是_14如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(
5、1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90,第一次旋转至图位置,第二次旋转至图位置,则正方形铁片连续旋转2017次后,点P的坐标为_15如图,已知ABC中,ABAC5,BC8,将ABC沿射线BC方向平移m个单位得到DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是_16如图,把一块含有45角的直角三角板的两个顶点放在直尺的对边上.如果1=20,那么2的度数是_.17一个正多边形的一个外角为30,则它的内角和为_18如图,在中,于点,于点,为边的中点,连接,则下列结论:,为等边三角形,当时,.请将正确结论
6、的序号填在横线上_. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)问题探究(1)如图,点E、F分别在正方形ABCD的边BC、CD上,EAF=45,则线段BE、EF、FD之间的数量关系为 ;(2)如图,在ADC中,AD=2,CD=4,ADC是一个不固定的角,以AC为边向ADC的另一侧作等边ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图,在四边形ABCD中,AB=AD,BAD=60,BC=4,若BDCD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理
7、由20(6分) “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图和图请根据相关信息,解答下列问题:(1)该校有_个班级,补全条形统计图;(2)求该校各班留守儿童人数数据的平均数,众数与中位数;(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童21(6分)探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手 次:;若参加聚会的人数为5,则共握手 次;若参加聚会的人数为n(n为正整
8、数),则共握手 次;若参加聚会的人共握手28次,请求出参加聚会的人数拓展:嘉嘉给琪琪出题:“若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?22(8分)解方程:2(x-3)=3x(x-3)23(8分)已知:如图,梯形ABCD中,ADBC,DEAB,与对角线交于点,且FG=EF.(1)求证:四边形是菱形;(2)联结AE,又知ACED,求证: .24(10分)某商店在2014年至2016年期间销售一种礼盒2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了1
9、1元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?25(10分)如图,在ABC中,AB=AC,以AB为直径的O分别交BC,AC于点D,E,DGAC于点G,交AB的延长线于点F(1)求证:直线FG是O的切线;(2)若AC=10,cosA=,求CG的长26(12分)如图,AD是ABC的中线,过点C作直线CFAD(问题)如图,过点D作直线DGAB交直线CF于点E,连结AE,求证:ABDE(探究)如图,在线段AD上任取一点P,过点P作直线PG
10、AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明(应用)在探究的条件下,设PE交AC于点M若点P是AD的中点,且APM的面积为1,直接写出四边形ABPE的面积27(12分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E(1)求证:DCEBFE;(2)若AB=4,tanADB=,求折叠后重叠部分的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可【详解】解:通过
11、数轴得到a0,c0,b0,|a|b|c|,a+b0,cb0|a+b|cb|=a+bb+c=a+c,故答案为a+c故选A2、B【解析】试题分析:由题意知,“-”代表零下,因此-3表示气温为零下3.故选B.考点:负数的意义3、D【解析】解:由对称轴x=2可知:b=4,抛物线y=x24x+c,令x=1时,y=c+5,x=3时,y=c3,关于x的一元二次方程x2bxc=0在1x3的范围有实数根,当=0时,即c=4,此时x=2,满足题意当0时,(c+5)(c3)0,5c3,当c=5时,此时方程为:x2+4x+5=0,解得:x=1或x=5不满足题意,当c=3时,此时方程为:x2+4x3=0,解得:x=1或
12、x=3此时满足题意,故5c3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.4、A【解析】直接把n的值代入求出m的取值范围【详解】解:点P(m,n),为是反比例函数y=-图象上一点,当-1n-1时,n=-1时,m=1,n=-1时,m=1,则m的取值范围是:1m1故选A【点睛】此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键5、D【解析】解:直线l1与x轴的交点为A(1,0),1k+b=0,解得:直线l1:y=1x+4与直线l1:y=kx+b(k0)的交点在第一象限,解得0k1故选D【点睛】两条直线相交或平
13、行问题;一次函数图象上点的坐标特征6、B【解析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值【详解】原式 故选:B【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键7、C【解析】试题分析:一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,故选C考点:正方体相对两个面上的文字8、A【解析】本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此列方程组即可求解【详解】设绳子长x尺,木条长y尺,依题意有故选A【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组9、D【解析】
14、根据有理数的乘法法则进行计算即可.【详解】 故选:D.【点睛】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.10、A【解析】分析:根据B点的变化,确定平移的规律,将ABC向右移5个单位、上移1个单位,然后确定A、C平移后的坐标即可.详解:由点B(4,1)的对应点B1的坐标是(1,2)知,需将ABC向右移5个单位、上移1个单位,则点A(1,3)的对应点A1的坐标为(4,4)、点C(2,1)的对应点C1的坐标为(3,2),故选A点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.11、B【解析】根据轴对称图形与中心对称图形的概念判断即可【详
15、解】解:A、是轴对称图形,也是中心对称图形,故错误;B、是中心对称图形,不是轴对称图形,故正确;C、是轴对称图形,也是中心对称图形,故错误;D、是轴对称图形,也是中心对称图形,故错误故选B【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合12、A【解析】4400000=4.41故选A点睛:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是
16、负数二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据三视图的定义求解即可【详解】主视图是第一层是三个小正方形,第二层右边一个小正方形,主视图的面积是4,俯视图是三个小正方形,俯视图的面积是3,左视图是下边一个小正方形,第二层一个小正方形,左视图的面积是2,几何体的三视图的面积之和是4+3+2=1,故答案为1【点睛】本题考查了简单组合体的三视图,利用三视图的定义是解题关键14、(6053,2)【解析】根据前四次的坐标变化总结规律,从而得解.【详解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),发现点P
17、的位置4次一个循环,20174=504余1,P2017的纵坐标与P1相同为2,横坐标为5+32016=6053,P2017(6053,2),故答案为(6053,2)考点:坐标与图形变化旋转;规律型:点的坐标15、或5或1【解析】根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可【详解】解:如图(1)当在ADE中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m个单位使得E、C点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE、AD为腰使ADE为等腰三角形,设平移了m个单位:则AN=3,AC=,AD=m,得:,得m=,综上所述:m为或5或1,
18、所以答案:或5或1【点睛】本题主要考查等腰三角形的性质,注意分类讨论的完整性.16、25【解析】直尺的对边平行,1=20,3=1=20,2=45-3=45-20=2517、1800【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(122)180=1800故答案为1800考点:多边形内角与外角18、【解析】根据直角三角形斜边上的中线等于斜边的一半可判断;先证明ABMACN,再根据相似三角形的对应边成比例可判断;先根据直角三角形两锐角互余的性质求出ABM=ACN=30,再根据三角形的内角和定理求出BCN+CBM=60,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出
19、BPN+CPM=120,从而得到MPN=60,又由得PM=PN,根据有一个角是60的等腰三角形是等边三角形可判断;当ABC=45时,BCN=45,进而判断【详解】BMAC于点M,CNAB于点N,P为BC边的中点,PM=BC,PN=BC,PM=PN,正确;在ABM与ACN中,A=A,AMB=ANC=90,ABMACN,错误;A=60,BMAC于点M,CNAB于点N,ABM=ACN=30,在ABC中,BCN+CBM=180-60-302=60,点P是BC的中点,BMAC,CNAB,PM=PN=PB=PC,BPN=2BCN,CPM=2CBM,BPN+CPM=2(BCN+CBM)=260=120,MP
20、N=60,PMN是等边三角形,正确;当ABC=45时,CNAB于点N,BNC=90,BCN=45,P为BC中点,可得BC=PB=PC,故正确所以正确的选项有:故答案为【点睛】本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2【解析】(1)作辅助线,首先证明ABEADG,再证明AEFAEG,进而得到EF=
21、FG问题即可解决;(2)将ABD绕着点B顺时针旋转60,得到BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,DBE=60,可得DE=BD,根据DEDC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EFBC于点F,连接DE,由旋转的性质得DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EFBC,可求出BF,EF,以BC为直径作F,则点D在F上,连接DF,可求出DF,则AC=DEDF+EF,代入数值即可解决问题.【详解】(1)如图,延长CD至G,使得DG=BE,正方形ABCD中,AB=AD,B=AFG=90,ABE
22、ADG,AE=AG,BAE=DAG,EAF=45,BAD=90,BAE+DAF=45,DAG+DAF=45,即GAF=EAF,又AF=AF,AEFAEG,EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在在等边三角形ABC中,AB=BC,ABC=60,如图,将ABD绕着点B顺时针旋转60,得到BCE,连接DE由旋转可得,CE=AD=2,BD=BE,DBE=60,DBE是等边三角形,DE=BD,在DCE中,DEDC+CE=4+2=6,当D、C、E三点共线时,DE存在最大值,且最大值为6,BD的最大值为6;(3)存在如图,以BC为边作等边三角形BCE,过点E作EFBC于点F
23、,连接DE,AB=BD,ABC=DBE,BC=BE,ABCDBE,DE=AC,在等边三角形BCE中,EFBC,BF=BC=2,EF=BF=2=2,以BC为直径作F,则点D在F上,连接DF,DF=BC=4=2,AC=DEDF+EF=2+2,即AC的最大值为2+2【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.20、(1)16;(2)平均数是3,众数是10,中位数是3;(3)1【解析】(1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;(2)将这组数
24、据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;(3)利用班级数60乘以(2)中求得的平均数即可【详解】解:(1)该校的班级数是:22.5%=16(个)则人数是8名的班级数是:161262=5(个)条形统计图补充如下图所示:故答案为16;(2)每班的留守儿童的平均数是:(16+27+58+610+22)16=3将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2故这组数据的众数是10,中位数是(8+10)2=3即统计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;(3)该镇小学生中,共有留守儿童603=
25、1(名)答:该镇小学生中共有留守儿童1名【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小也考查了平均数、中位数和众数以及用样本估计总体21、探究:(1)3,1;(2);(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.【解析】探究:(1)根据握手次数=参会人数(参会人数-1)2,即可求出结论;(2)由(1)的结论结合参会人数为n,即可得出结论;(3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;拓展:将线
26、段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对【详解】探究:(1)3(3-1)2=3,5(5-1)2=1故答案为3;1(2)参加聚会的人数为n(n为正整数),每人需跟(n-1)人握手,握手总数为故答案为(3)依题意,得:=28,整理,得:n2-n-56=0,解得:n1=8,n2=-7(舍去)答:参加聚会的人数为8人拓展:琪琪的思考对,理由如下:如果线段数为2,则由题意,得:=2,整理,得:m2-m-60=0,解得m1=,m2=(舍去)m为正整数,没有符合题意的解,线段总数不可能为2【点睛】本题考查了
27、一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程22、.【解析】先进行移项,在利用因式分解法即可求出答案.【详解】,移项得:,整理得:,或,解得:或【点睛】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.23、 (1)见解析;(2)见解析【解析】分析:(1)由两组对边分别平行的四边形是平行四边形,得到是平行四边形再由平行线分线段成比例定理得到:, ,即可得到结论;(2)连接,与交于点由菱形的性质得到,进而得到 ,即有,得到,由
28、相似三角形的性质即可得到结论详解:(1) ,四边形是平行四边形,同理 得:,四边形是菱形(2)连接,与交于点四边形是菱形,得 同理又是公共角,点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质灵活运用菱形的判定与性质是解题的关键24、(1)35元/盒;(2)20%【解析】试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价单价求出2014年的购进数量,再根据2014年的销售利润(
29、1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x11)元/盒,根据题意得:,解得:x=35,经检验,x=35是原方程的解答:2014年这种礼盒的进价是35元/盒(2)设年增长率为m,2014年的销售数量为350035=100(盒)根据题意得:(6035)100(1+a)2=(6035+11)100,解得:a=0.2=20%或a=2.2(不合题意,舍去)答:年增长率为20%考点:一元二次方程的应用;分式方程的应用;增长率问题25、(3)证明见试题解析;(3)3【解析】试题分析
30、:(3)先得出ODAC,有ODG=DGC,再由DGAC,得到DGC=90,ODG=90,得出ODFG,即可得出直线FG是O的切线(3)先得出ODFAGF,再由cosA=,得出cosDOF=;然后求出OF、AF的值,即可求出AG、CG的值试题解析:(3)如图3,连接OD,AB=AC,C=ABC,OD=OB,ABC=ODB,ODB=C,ODAC,ODG=DGC,DGAC,DGC=90,ODG=90,ODFG,OD是O的半径,直线FG是O的切线;(3)如图3,AB=AC=30,AB是O的直径,OA=OD=303=5,由(3),可得:ODFG,ODAC,ODF=90,DOF=A,在ODF和AGF中,D
31、OF=A,F=F,ODFAGF,cosA=,cosDOF=,OF=,AF=AO+OF=,解得AG=7,CG=ACAG=307=3,即CG的长是3考点:3切线的判定;3相似三角形的判定与性质;3综合题26、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.【解析】(1)先根据平行线的性质和等量代换得出13,再利用中线性质得到BDDC,证明ABDEDC,从而证明ABDE(2)方法一:过点D作DNPE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明
32、ABPEPN,从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.【详解】证明:如图 是的中线,(或证明四边形ABDE是平行四边形,从而得到)【探究】四边形ABPE是平行四边形方法一:如图,证明:过点D作交直线于点,四边形是平行四边形,由问题结论可得四边形是平行四边形方法二:如图,证明:延长BP交直线CF于点N,是的中线,四边形是平行四边形【应用】如图,延长BP交CF于H由上面可知,四边形是平行四边形,四边形APHE是平行四边形,【点睛】此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.27、
33、(1)见解析;(2)1【解析】(1)由矩形的性质可知A=C=90,由翻折的性质可知A=F=90,从而得到F=C,依据AAS证明DCEBFE即可;(2)由DCEBFE可知:EB=DE,依据AB=4,tanADB=,即可得到DC,BC的长,然后再RtEDC中利用勾股定理列方程,可求得BE的长,从而可求得重叠部分的面积【详解】解:(1)四边形ABCD是矩形,A=C=90,AB=CD,由折叠可得,F=A,BF=AB,BF=DC,F=C=90,又BEF=DEC,DCEBFE;(2)AB=4,tanADB=,AD=8=BC,CD=4,DCEBFE,BE=DE,设BE=DE=x,则CE=8x,在RtCDE中,CE2+CD2=DE2,(8x)2+42=x2,解得x=5,BE=5,SBDE=BECD=54=1【点睛】本题考查了折叠的性质、全等三角形的判定和性质以及勾股定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等