浙江省衢州市六校联谊市级名校2023年中考冲刺卷数学试题含解析.doc

上传人:lil****205 文档编号:88314282 上传时间:2023-04-25 格式:DOC 页数:21 大小:742KB
返回 下载 相关 举报
浙江省衢州市六校联谊市级名校2023年中考冲刺卷数学试题含解析.doc_第1页
第1页 / 共21页
浙江省衢州市六校联谊市级名校2023年中考冲刺卷数学试题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《浙江省衢州市六校联谊市级名校2023年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省衢州市六校联谊市级名校2023年中考冲刺卷数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1根据文化和旅游部发布的“五一”假日旅游指南,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元将880亿用科学记数法表示应为()A8107B880108C8.8109

2、D8.810102下列多边形中,内角和是一个三角形内角和的4倍的是()A四边形 B五边形 C六边形 D八边形3小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm 21.5 22.0 22.5 23.0 23.5人数24383学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是()A平均数B加权平均数C众数D中位数4股市有风险,投资需谨慎截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )A9.5106B9.5107C9.5108D9.51095下列各组数中,互为相反数的

3、是()A2 与2B2与2C3与D3与3-6化简的结果是()ABCD7如图,在矩形纸片ABCD中,已知AB,BC1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D的过程中,则点F运动的路径长为( )ABCD8如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A1处B2处C3处D4处9函数y=中自变量x的取值范围是( )Ax-1且x1Bx-1Cx1D-1x110下列计算正确的是()Aa4+a5=a9 B(2a2b3)2=4a4b6C2a(a

4、+3)=2a2+6a D(2ab)2=4a2b2二、填空题(本大题共6个小题,每小题3分,共18分)11如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程已知:线段a、b,求作:.使得斜边ABb,ACa作法:如图.(1)作射线AP,截取线段ABb;(2)以AB为直径,作O;(3)以点A为圆心,a的长为半径作弧交O于点C;(4)连接AC、CB.即为所求作的直角三角形.请回答:该尺规作图的依据是_.12如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_.13二次函数y(x2m)2+1,当mxm+1时,y随x的增大而减小,则m的取值范围是_14如图,

5、数轴上点A表示的数为a,化简:a_15如图,一名滑雪运动员沿着倾斜角为34的斜坡,从A滑行至B,已知AB500米,则这名滑雪运动员的高度下降了_米(参考数据:sin340.56,cos340.83,tan340.67)16已知x、y是实数且满足x2+xy+y22=0,设M=x2xy+y2,则M的取值范围是_三、解答题(共8题,共72分)17(8分)一辆汽车,新车购买价30万元,第一年使用后折旧,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为万元,求这辆车第二、三年的年折旧率.18(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停

6、止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?19(8分)如图,已知抛物线y=x2+bx+c经过ABC的三个顶点,其中点A(0,1),点B(9,10),ACx轴,点P是直线AC下方抛物线上的动点(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由20(8分)如图,已知反比

7、例函数y的图象与一次函数yx+b的图象交于点A(1,4),点B(4,n)求n和b的值;求OAB的面积;直接写出一次函数值大于反比例函数值的自变量x的取值范围21(8分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m)与时间(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量(2)求当0x60时,水库的总蓄水量y万(万m)与时间x(天)的函数关系式(注明x的范围),若总

8、蓄水量不多于900万m为严重干旱,直接写出发生严重干旱时x的范围22(10分)如图,是菱形的对角线,(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)在(1)条件下,连接,求的度数23(12分)已知:如图,AB为O的直径,C是BA延长线上一点,CP切O于P,弦PDAB于E,过点B作BQCP于Q,交O于H,(1)如图1,求证:PQPE;(2)如图2,G是圆上一点,GAB30,连接AG交PD于F,连接BF,若tanBFE3,求C的度数;(3)如图3,在(2)的条件下,PD6,连接QC交BC于点M,求QM的长24益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大

9、大降低马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元件)如下表所示:品种AB原来的运费4525现在的运费3020(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】科学记数法的表示形式为a10n的

10、形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】880亿=880 0000 0000=8.81010,故选D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、C【解析】利用多边形的内角和公式列方程求解即可【详解】设这个多边形的边数为n由题意得:(n2)180=4180解得:n=1答:这个多边形的边数为1故选C【点睛】本题主要考查的是多边形的内角和公式,掌握多边形的内角和

11、公式是解题的关键3、C【解析】根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,则商店经理的这一决定应用的统计量是这组数据的众数故选:C【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用4、B【解析】试题分析: 15000000=152故选B考点:科学记数法表示较大的数5、A【解析】根据只有符号不同的两数互为相反数,可直接

12、判断.【详解】-2与2互为相反数,故正确;2与2相等,符号相同,故不是相反数;3与互为倒数,故不正确;3与3相同,故不是相反数.故选:A.【点睛】此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.6、D【解析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式=(+1)=2+.故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.7、D【解析】点F的运动路径的长为弧FF的长,求出圆心角、半径即可解决问题【详解】如图,点F的运动路径的长为弧FF的长,在RtABC中,tanBAC=,BAC=30,CAF=BAC=30,BAF

13、=60,FAF=120,弧FF的长=故选D.【点睛】本题考查了矩形的性质、特殊角的三角函数值、含30角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径8、D【解析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处如图所示,故选D【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时

14、一定要注意,不要漏解9、A【解析】分析:根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分详解:根据题意得到:,解得x-1且x1,故选A点睛:本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数易错易混点:学生易对二次根式的非负性和分母不等于0混淆10、B【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算详解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,

15、故本选项正确;C、-2a(a+3)=-2a2-6a,故本选项错误;D、(2a-b)2=4a2-4ab+b2,故本选项错误;故选:B点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、等圆的半径相等,直径所对的圆周角是直角,三角形定义【解析】根据圆周角定理可判断ABC为直角三角形【详解】根据作图得AB为直径,则利用圆周角定理可判断ACB=90,从而得到ABC满足条件故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义【点睛】本题考查了作图复杂作图:复杂作图是在五

16、种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了圆周角定理12、【解析】试题解析:两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,P(飞镖落在白色区域)=.13、m1【解析】由条件可知二次函数对称轴为x=2m,且开口向上,由二次函数的性质可知在对称轴的左侧时y随x的增大而减小,可求得m+12m,即m1故答案为m1点睛:本题主要考查二次函数的性质,掌握当抛物线开口向下时,在对称轴右侧y随x的增大而减小是解题的关键14、1【

17、解析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可【详解】由数轴可得:0a1,则a+=a+=a+(1a)=1故答案为1【点睛】本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键15、1【解析】试题解析:在RtABC中,sin34=AC=ABsin34=5000.56=1米.故答案为1.16、M6【解析】把原式的xy变为2xy-xy,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy的范围;再把原式中的xy变为-2xy+3xy,同理得到xy的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy的范围,最后利用已知x2+xy+y

18、2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范围即为M的范围【详解】由得: 即 所以 由得: 即 所以 不等式两边同时乘以2得:,即 两边同时加上2得:即 则M的取值范围是M6.故答案为:M6.【点睛】此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M关于xy的式子,从而求出M的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.三、解答题(共8题,共72分)17、这辆车第二、三年的年折旧率为.【解析】设这辆

19、车第二、三年的年折旧率为x,则第二年这就后的价格为30(1-20%)(1-x)元,第三年折旧后的而价格为30(1-20%)(1-x)2元,与第三年折旧后的价格为17.34万元建立方程求出其解即可【详解】设这辆车第二、三年的年折旧率为,依题意,得 整理得, 解得,.因为折旧率不可能大于1,所以不合题意,舍去.所以 答:这辆车第二、三年的年折旧率为.【点睛】本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键18、软件升级后每小时生产1个零件【解析】分析:设软件升级前每小时生产x个零件,则软件升级后每小时

20、生产(1+)x个零件,根据工作时间=工作总量工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:,解得:x=60,经检验,x=60是原方程的解,且符合题意,(1+)x=1答:软件升级后每小时生产1个零件点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键19、 (1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,);(3) Q(4,1)或(-3,1).【解析】(1)把点A,B的坐标代入抛物线的解析式中,求b,c;

21、(2)设P(m,m22m1),根据S四边形AECPSAECSAPC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出BACPCA45,则要分两种情况讨论,根据相似三角形的对应边成比例求t.【详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:819bc10,c1,解得b2,c1,所以抛物线的解析式yx22x1;(2)ACx轴,A(0,1),x22x11,解得x16,x20(舍),即C点坐标为(6,1),点A(0,1),点B(9,10),直线AB的解析式为yx1,

22、设P(m,m22m1),E(m,m1),PEm1(m22m1)m23m.ACPE,AC6,S四边形AECPSAECSAPCACEFACPFAC(EFPF)ACEP6(m23m)m29m.0m6,当m时,四边形AECP的面积最大值是,此时P();(3)yx22x1(x3)22,P(3,2),PFyFyp3,CFxFxC3,PFCF,PCF45,同理可得EAF45,PCFEAF,在直线AC上存在满足条件的点Q,设Q(t,1)且AB,AC6,CP,以C,P,Q为顶点的三角形与ABC相似,当CPQABC时,CQ:ACCP:AB,(6t):6,解得t4,所以Q(4,1);当CQPABC时,CQ:ABCP

23、:AC,(6t)6,解得t3,所以Q(3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与ABC相似,Q点的坐标为(4,1)或(3,1).【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要分类讨论,以防遗漏20、(1)-1;(2);(3)x1或4x0. 【解析】(1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析

24、式求出n的值即可;(2)设直线yx+3与y轴的交点为C,由SAOB=SAOC+SBOC,根据A、B两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.【详解】(1)把A点(1,4)分别代入反比例函数y,一次函数yx+b,得k14,1+b4,解得k4,b3,点B(4,n)也在反比例函数y的图象上,n1;(2)如图,设直线yx+3与y轴的交点为C,当x0时,y3,C(0,3),SAOBSAOC+SBOC31+347.5,(3)B(4,1),A(1,4),根据图象可知:当x1或4x0时,一次函数值大于反比例函数值【点睛】本题主要考查了待定系数法求反比例

25、函数与一次函数的解析式和反比例函数y中k的几何意义,这里体现了数形结合的思想21、(1)y1=-20x+1200, 800;(2)15x40.【解析】(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.【详解】解:(1)设y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,当x=20时,y1=-2020+1200=800,(2)设y2=kx+b,把(20,0)和(60,1000)代入得则,所以y2=25x-500,当0x20时,y=-20x+1200,当20x

26、60时,y=y1+y2=-20x+1200+25x-500=5x+700,由题意解得该不等式组的解集为15x40所以发生严重干旱时x的范围为15x40.【点睛】此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.22、(1)答案见解析;(2)45【解析】(1)分别以A、B为圆心,大于长为半径画弧,过两弧的交点作直线即可;(2)根据DBFABDABF计算即可;【详解】(1)如图所示,直线EF即为所求;(2)四边形ABCD是菱形,ABDDBCABC75,DCAB,AC,ABC150,ABC+C180,CA30EF垂直平分线段AB,AFFB,AF

27、BA30,DBFABDFBE45【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题23、(1)证明见解析(2)30(3) QM=【解析】试题分析:(1)连接OP,PB,由已知易证OBP=OPB=QBP,从而可得BP平分OBQ,结合BQCP于点Q,PEAB于点E即可由角平分线的性质得到PQ=PE;(2)如下图2,连接OP,则由已知易得CPO=PEC=90,由此可得C=OPE,设EF=x,则由GAB=30,AEF=90可得AE=,在RtBEF中,由tanBFE=可得BE=,从而可得AB=,则OP=OA=,结合AE=可得OE=,这样即可得到sinOP

28、E=,由此可得OPE=30,则C=30;(3)如下图3,连接BG,过点O作OKHB于点K,结合BQCP,OPQ=90,可得四边形POKQ为矩形由此可得QK=PO,OKCQ从而可得KOB=C=30;由已知易证PE=,在RtEPO中结合(2)可解得PO=6,由此可得OB=QK=6;在RtKOB中可解得KB=3,由此可得QB=9;在ABG中由已知条件可得BG=6,ABG=60;过点G作GNQB交QB的延长线于点N,由ABG=CBQ=60,可得GBN=60,从而可得解得GN=,BN=3,由此可得QN=12,则在RtBGN中可解得QG=,由ABG=CBQ=60可知BQG中BM是角平分线,由此可得QM:G

29、M=QB:GB=9:6由此即可求得QM的长了.试题解析:(1)如下图1,连接OP,PB,CP切O于P,OPCP于点P,又BQCP于点Q,OPBQ,OPB=QBP,OP=OB,OPB=OBP,QBP=OBP,又PEAB于点E,PQ=PE;(2)如下图2,连接,CP切O于P,PDAB 在Rt中,GAB=30设EF=x,则在Rt中,tanBFE=3 在RtPEO中, 30;(3)如下图3,连接BG,过点O作于K,又BQCP,四边形POKQ为矩形,QK=PO,OK/CQ,30,O 中PDAB于E ,PD=6 ,AB为O的直径,PE= PD= 3,根据(2)得,在RtEPO中,OB=QK=PO=6,在R

30、t中, ,QB=9,在ABG中,AB为O的直径,AGB=90,BAG=30,BG=6,ABG=60,过点G作GNQB交QB的延长线于点N,则N=90,GBN=180-CBQ-ABG=60,BN=BQcosGBQ=3,GN=BQsinGBQ=,QN=QB+BN=12,在RtQGN中,QG=,ABG=CBQ=60,BM是BQG的角平分线,QM:GM=QB:GB=9:6,QM=.点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及CBQ=ABG=60;(2)再过点G作GNQB并交QB的延长线于点N,解出BN和GN的长,这样即可在RtQGN中求得QG的长

31、,最后在BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.24、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元【解析】(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可

32、得到答案【详解】解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据题意得:,解得:,答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,根据题意得:W=30(10+m)+20(38-m)=10m+1060,由题意得:38-m2(10+m),解得:m6,即6m8,一次函数W随m的增大而增大当m=6时,W最小=1120,答:产品件数增加后,每次运费最少需要1120元【点睛】本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁