《浙江省诸暨市陶朱中学2023年中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省诸暨市陶朱中学2023年中考数学押题卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,在菱形ABCD中,AB=5,BCD=120,则ABC的周长等于( )A20B15C10D52如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体
2、的侧面积为()A9B10C11D123等式组的解集在下列数轴上表示正确的是( )ABCD4一元二次方程x28x2=0,配方的结果是()A(x+4)2=18B(x+4)2=14C(x4)2=18D(x4)2=145抛物线yx22x3的对称轴是( )A直线x1B直线x1C直线x2D直线x26如图,在四边形ABCD中,ADBC,ABC+DCB=90,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1若S2=48,S1=9,则S1的值为()A18B12C9D17在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同若要比较这两名同学的成绩哪一个
3、更为稳定,通常需要比较他们成绩的( )A众数B平均数C中位数D方差8下列说法错误的是()A的相反数是2B3的倒数是CD,0,4这三个数中最小的数是09下列图形不是正方体展开图的是()ABCD10如图: 在中,平分,平分,且交于,若,则等于( )A75B100 C120 D125二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在ABC中,ACB=90,B=60,AB=12,若以点A为圆心, AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为_(保留根号和)12已知点A(x1,y1),B(x2,y2)在直线ykxb上,且直线经过第一、三、
4、四象限,当x1x2时,y1与y2的大小关系为_13如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是_结果保留14将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm15如图,CD是RtABC斜边AB上的高,将BCD沿CD折叠,B点恰好落在AB的中点E处,则A等于_度16的算术平方根是_三、解答题(共8题,共72分)17(8分)如图,在五边形ABCDE中,C100,D75,E135,AP平分EAB,BP平分ABC,求P的度数18(8分) “大美湿地,水韵盐城”某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本
5、校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数19(8分)如图,BCD90,且BCDC,直线PQ经过点D设PDC(45135),BAPQ于点A,将射线CA绕点C按逆时针方向旋转90,与直线PQ交于点E当125时,ABC ;求证:ACCE;若ABC的外心在其内部,直接写出的取值范围20(8分)均衡化验收以来,乐陵每个学校都高楼林立
6、,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30,他又继续走下台阶到达C处,测得树的顶端的仰角是60,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45,已如A点离地面的高度AB4米,BCA30,且B、C、D 三点在同一直线上(1)求树DE的高度;(2)求食堂MN的高度21(8分)如果想毁掉一个孩子,就给他一部手机!这是2017年微信圈一篇热传的文章国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们
7、随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图,的统计图,已知“查资料”的人数是40人请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为 ,圆心角度数是 度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数22(10分)如图,AB是O的直径,点C是弧AB的中点,点D是O外一点,AD=AB,AD交O于F,BD交O于E,连接CE交AB于G(1)证明:C=D;(2)若BEF=140,求C的度数;(3)若EF=2,tanB=3,求CECG的值23(12分)计算:2sin30|1|+()124如图,已知
8、ABC中,AB=AC=5,cosA=求底边BC的长参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】ABCD是菱形,BCD=120,B=60,BA=BCABC是等边三角形ABC的周长=3AB=1故选B2、B【解析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案【详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:25=10,故选B【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键3、B【解析】【分析】分别求出每一个不等式的解集,然后在数轴上表示出每个不等式的解集,对比即可得
9、.【详解】,解不等式得,x-3,解不等式得,x2,在数轴上表示、的解集如图所示,故选B.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示.4、C【解析】x2-8x=2,x2-8x+16=1,(x-4)2=1故选C【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用
10、直接开平方法求解,这种解一元二次方程的方法叫配方法5、B【解析】根据抛物线的对称轴公式:计算即可【详解】解:抛物线yx22x3的对称轴是直线故选B【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键6、D【解析】过A作AHCD交BC于H,根据题意得到BAE=90,根据勾股定理计算即可【详解】S2=48,BC=4,过A作AHCD交BC于H,则AHB=DCBADBC,四边形AHCD是平行四边形,CH=BH=AD=2,AH=CD=1ABC+DCB=90,AHB+ABC=90,BAH=90,AB2=BH2AH2=1,S1=1故选D【点睛】本题考查了勾股定理,正方形的性质,平行四
11、边形的判定和性质,正确的作出辅助线是解题的关键7、D【解析】方差是反映一组数据的波动大小的一个量方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。【详解】由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差故选D8、D【解析】试题分析:2的相反数是2,A正确;3的倒数是,B正确;(3)(5)=3+5=2,C正确;11,0,4这三个数中最小的数是11,D错误,故选D考点:1相反数;2倒数;3有理数大小比较;4有理数的减法9、B【解析】由平面图形的折叠及正方体的展开图解题【详解】A、C、D经过折叠均能围成正方体,B折叠后上边没
12、有面,不能折成正方体故选B【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.10、B【解析】根据角平分线的定义推出ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值【详解】解:CE平分ACB,CF平分ACD,ACE=ACB,ACF=ACD,即ECF=(ACB+ACD)=90,EFC为直角三角形,又EFBC,CE平分ACB,CF平分ACD,ECB=MEC=ECM,DCF=CFM=MCF,CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1故选:B【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把
13、这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出ECF为直角三角形二、填空题(本大题共6个小题,每小题3分,共18分)11、1518.【解析】根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-SABC即可得到答案【详解】S阴影部分=S扇形ACE+S扇形BCD-SABC,S扇形ACE=12,S扇形BCD=3,SABC=66=18,S阴影部分=12+318=1518.故答案为1518.【点睛】本题考查了扇形
14、面积的计算,解题的关键是熟练的掌握扇形的面积公式.12、y1y1【解析】直接利用一次函数的性质分析得出答案【详解】解:直线经过第一、三、四象限,y随x的增大而增大,x1x1,y1与y1的大小关系为:y1y1故答案为:y1y1【点睛】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键13、【解析】直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案【详解】由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:6故答案为6【点睛】本题考查了弧长的计算以及菱形的性质,正确得出圆心角是解题的关键14、1【解析】试题分
15、析:如图,矩形的对边平行,1=ACB,1=ABC,ABC=ACB,AC=AB,AB=1cm,AC=1cm考点:1轴对称;2矩形的性质;3等腰三角形.15、30【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则A=30.考点:折叠图形的性质16、【解析】=8,()2=8,的算术平方根是.故答案为:. 三、解答题(共8题,共72分)17、65【解析】EAB+ABC+C+D+E=(5-2)180=540,C=100,D=75,E=135,EAB+ABC=540-C-D-E=230.AP平分EAB,PAB=12EAB.同理
16、可得,ABP=ABC.P+PAB+PBA=180,P=180-PAB-PBA=180-EAB-ABC=180-(EAB+ABC)=180-230=65.18、(1)40;(2)72;(3)1【解析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可【详解】(1)被调查的学生总人数为820%=40(人);(2)最想去D景点的人数为4081446=8(人),补全条
17、形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为360=72;(3)800=1,所以估计“最想去景点B“的学生人数为1人19、(1)125;(2)详见解析;(3)4590【解析】(1)利用四边形内角和等于360度得:B+ADC180,而ADC+EDC180,即可求解;(2)证明ABCEDC(AAS)即可求解;(3)当ABC90时,ABC的外心在其直角边上,ABC90时,ABC的外心在其外部,即可求解【详解】(1)在四边形BADC中,B+ADC360BADDCB180,而ADC+EDC180,ABCPDC125,故答案为125;(2)ECD+DCA90,DCA+ACB90,ACB
18、ECD,又BCDC,由(1)知:ABCPDC,ABCEDC(AAS),ACCE;(3)当ABC90时,ABC的外心在其斜边上;ABC90时,ABC的外心在其外部,而45135,故:4590【点睛】本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心20、(1)12米;(2)(2+8)米【解析】(1)设DEx,先证明ACE是直角三角形,CAE60,AEC30,得到AE16,根据EF=8求出x的值得到答案;(2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用NDP45得到NP,即可求出MN.【详解】(1)如图,设DEx,ABDF4,ACB30,AC8,
19、ECD60,ACE是直角三角形,AFBD,CAF30,CAE60,AEC30,AE16,RtAEF中,EF8,即x48,解得x12,树DE的高度为12米;(2)延长NM交DB延长线于点P,则AMBP6,由(1)知CDCEAC4,BC4,PDBP+BC+CD6+4+46+8,NDP45,且NPD90,NPPD6+8,NMNPMP6+842+8,食堂MN的高度为(2+8)米【点睛】此题是解直角三角形的实际应用,考查直角三角形的性质,30角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.21、(1)35%,126;(2
20、)见解析;(3)1344人【解析】(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;(2)求出3小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果【详解】(1)根据题意得:1(40%+18%+7%)35%,则“玩游戏”对应的圆心角度数是36035%126,故答案为35%,126;(2)根据题意得:4040%100(人),3小时以上的人数为100(2+16+18+32)32(人),补全图形如下:;(3)根据题意得:21001344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人
21、【点睛】本题考查了条形统计图,扇形统计图,以及用样本估计总体,准确识图,从中找到必要的信息进行解题是关键.22、(1)见解析;(2)70;(3)1【解析】(1)先根据等边对等角得出B=D,即可得出结论;(2)先判断出DFE=B,进而得出D=DFE,即可求出D=70,即可得出结论;(3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出ACGECA,即可得出结论【详解】(1)AB=AD,B=D,B=C,C=D;(2)四边形ABEF是圆内接四边形,DFE=B,由(1)知,B=D,D=DFE,BEF=140=D+DFE=2D,D=70,由(1)知,C=D,C=70;(3)如图
22、,由(2)知,D=DFE,EF=DE,连接AE,OC,AB是O的直径,AEB=90,BE=DE,BE=EF=2,在RtABE中,tanB=3,AE=3BE=6,根据勾股定理得,AB=,OA=OC=AB=,点C是 的中点, ,AOC=90,AC=OA=2,CAG=CEA,ACG=ECA,ACGECA,CECG=AC2=1【点睛】本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键23、4【解析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂的法则计算即可【详解】原式=2( 1)+2=1+1+2=4【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键24、【解析】过点B作BDAC,在ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.【详解】解:过点B作BDAC,垂足为点D,在RtABD中,,,AB=5,AD=ABcosA=5=3,BD=4,AC=5,DC=2,BC=.【点睛】本题考查了锐角的三角函数和勾股定理的运用.