《青岛市重点达标名校2023年中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《青岛市重点达标名校2023年中考数学对点突破模拟试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1已知抛物线yax2+bx+c(a0)与x轴交于点A(1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:4a+2b0; 1a; 对于任意实数m,a+bam2+bm总成立;关于x的方程ax2+bx+cn1
2、有两个不相等的实数根其中结论正确的个数为()A1个B2个C3个D4个2实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论ab;|b|=|d|;a+c=a;ad0中,正确的有()A4个B3个C2个D1个3计算的结果是( )A1B-1CD4中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )ABCD5如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )A正方体B球C圆锥D圆柱体6方程2x2x3=0的两个根为()Ax1=,x2=1Bx1=,x2=1Cx1=,x2=3Dx1=,x2=37如图,一个斜边长为10cm的红色三角
3、形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A60cm2B50cm2C40cm2D30cm28矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )A(5,5)B(5,4)C(6,4)D(6,5)9下列四个图形中,既是轴对称图形又是中心对称图形的是()ABCD10关于的一元二次方程有两个不相等的实数根,则的取值范围为( )A B C D二、填空题(本大题共6个小题,每小题3分,共18分)11如图是一位同学设计的用手电筒来测量某古城墙高度的示意图点P处放一水平的平面镜,光线从点A出发经平
4、面镜反射后刚好到古城墙CD的顶端C处,已知ABBD,CDBD,测得AB2米,BP3米,PD15米,那么该古城墙的高度CD是_米12观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_(用含n的代数式表示)13如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为_14如图,A,B两点被池塘隔开,不能直接测量其距离于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AMAC,BNBC,测得MN200m,则A,B间的距离为_m15若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_三角形16一个多项式与的积为,那么
5、这个多项式为 .三、解答题(共8题,共72分)17(8分)化简求值:,其中18(8分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图(1)测试不合格人数的中位数是 (2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图19(8分)如图所示,在中,(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)(2)连接AP当为多少度时,AP平分20(8分)如图平行四边形ABCD中,对角线A
6、C,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5(1)求BC的长;(2)如果两条对角线长的和是20,求三角形AOD的周长21(8分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37和60,在A处测得塔顶C的仰角为30,则通信塔CD的高度(sin370.60,cos370.80,tan370.75,=1.73,精确到0.1m)22(10分)已知AB是O的直径,PB是O的切线,C是O上的点,ACOP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,
7、B与直线CM上的点连线距离的最小值为f(1)求证:PC是O的切线;(2)设OP=AC,求CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围23(12分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点(1)若点的横坐标为,求的面积;(用含的式子表示)(2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由24小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小
8、强至少需要几米长的竹篱笆(不考虑接缝)小强根据他学习函数的经验做了如下的探究下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米则y关于x的函数表达式为_;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x_时,y有最小值由此,小强确定篱笆长至少为_米参考答案一、选择题(共10小题,每
9、小题3分,共30分)1、C【解析】由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论错误;利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1a-,结论正确;由抛物线的顶点坐标及a0,可得出n=a+b+c,且nax2+bx+c,进而可得出对于任意实数m,a+bam2+bm总成立,结论正确;由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合正确【详解】:抛物线y=ax
10、2+bx+c的顶点坐标为(1,n),-=1,b=-2a,4a+2b=0,结论错误;抛物线y=ax2+bx+c与x轴交于点A(-1,0),a-b+c=3a+c=0,a=-又抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),2c3,-1a-,结论正确;a0,顶点坐标为(1,n),n=a+b+c,且nax2+bx+c,对于任意实数m,a+bam2+bm总成立,结论正确;抛物线y=ax2+bx+c的顶点坐标为(1,n),抛物线y=ax2+bx+c与直线y=n只有一个交点,又a0,抛物线开口向下,抛物线y=ax2+bx+c与直线y=n-1有两个交点,关于x的方程ax2+bx
11、+c=n-1有两个不相等的实数根,结合正确故选C【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键2、B【解析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,ab,故正确;|b|=|d|,故正确;a+c=a,故正确;ad0,故错误;故选B【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键3、C【解析】原式通分并利用同分母分式的减法法则计算,即可得到结果【详解】解:=
12、,故选:C.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键4、C【解析】根据中心对称图形的概念进行分析【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C【点睛】考查了中心对称图形的概念中心对称图形是要寻找对称中心,旋转180度后两部分重合5、D【解析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞【详解】根据三视图的知识来解答圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱
13、是最佳选项故选D【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难6、A【解析】利用因式分解法解方程即可【详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1故选A【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)7、D【解析】标注字母,根据两直线平行,同位角相等可
14、得B=AED,然后求出ADE和EFB相似,根据相似三角形对应边成比例求出,即,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解【详解】解:如图,正方形的边DECF,B=AED,ADE=EFB=90,ADEEFB,设BF=3a,则EF=5a,BC=3a+5a=8a,AC=8a=a,在RtABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,红、蓝两张纸片的面积之和=a8a-(5a)1,=a1-15a1,=a1,=,=30cm1故选D【点睛】本题考查根据相
15、似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.8、B【解析】由矩形的性质可得ABCD,AB=CD,AD=BC,ADBC,即可求点D坐标【详解】解:四边形ABCD是矩形ABCD,AB=CD,AD=BC,ADBC,A(1,4)、B(1,1)、C(5,1),ABCDy轴,ADBCx轴点D坐标为(5,4)故选B【点睛】本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.9、D【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项
16、不合题意;C、不是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、B【解析】试题分析:根据题意得=324m0,解得m故选B考点:根的判别式点睛:本题考查了一元二次方程ax2+bx+c=0(a0,a,b,c为常数)的根的判别式=b2-4ac当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根二、填空题(本大题共6个小题,每小题3分,共18分)1
17、1、10【解析】首先证明ABPCDP,可得=,再代入相应数据可得答案【详解】如图,由题意可得:APE=CPE,APB=CPD,ABBD,CDBD,ABP=CDP=90,ABPCDP,=,AB=2米,BP=3米,PD=15米,=,解得:CD=10米.故答案为10.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.12、3n+1【解析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律【详解】解:由题意可知:每1个都比前一个多出了3个“”,第n个图案中共有“”为:4+3(n1)3n+1故答案为:3n+1.【点睛
18、】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型13、1【解析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题【详解】解:四边形ABCD是矩形,AD=BC=8,AB=CD=6,ABC=90, AO=OC, AO=OC,AM=MD=4, 四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1故答案为:1【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型14、1【解析】AM=AC,BN=BC,AB是ABC的中位线,AB=MN=1m,故答案
19、为115、直角三角形【解析】根据题意,画出图形,用垂直平分线的性质解答【详解】点O落在AB边上,连接CO,OD是AC的垂直平分线,OC=OA,同理OC=OB,OA=OB=OC,A、B、C都落在以O为圆心,以AB为直径的圆周上,C是直角这个三角形是直角三角形【点睛】本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.16、【解析】试题分析:依题意知=考点:整式运算点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。三、解答题(共8题,共72分)17、 【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代
20、入运算即可.详解:原式 当时,点睛:考查分式的混合运算,掌握运算顺序是解题的关键.18、(1)1;(2)这两次测试的平均增长率为20%;(3)55%【解析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数参加测试的总人数100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充
21、完整,此题得解【详解】解:(1)将四次测试结果排序,得:30,40,50,60,测试不合格人数的中位数是(40+50)21故答案为1;(2)每次测试不合格人数的平均数为(60+40+30+50)41(人),第四次测试合格人数为121872(人)设这两次测试的平均增长率为x,根据题意得:50(1+x)272,解得:x10.220%,x22.2(不合题意,舍去),这两次测试的平均增长率为20%;(3)50(1+20%)60(人),(60+40+30+50)(38+60+50+40+60+30+72+50)100%1%,11%55%补全条形统计图与扇形统计图如解图所示【点睛】本题考查了一元二次方程的
22、应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据19、(1)详见解析;(2)30【解析】(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得B的度数,可得答案【详解】(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,EF为AB的垂直平分线,PA=PB,点P即为所求(2)如图,连接AP,AP是角平分线,PAC+
23、PAB+B=90,3B=90,解得:B=30,当时,AP平分【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键20、 (1)8;(2)1.【解析】(1)由平行四边形的性质和已知条件易证AOECOF,所以可得AE=CF=3,进而可求出BC的长;(2)由平行四边形的性质:对角线互相平分可求出AO+OD的长,进而可求出三角形AOD的周长【详解】(1)四边形ABCD是平行四边形,ADBC,AO=CO,EAO=FCO,在AOE和COF中,AOECOF,AE=CF=3,BC=BF+CF
24、=5+3=8;(2)四边形ABCD是平行四边形,AO=CO,BO=DO,AD=BC=8,AC+BD=20,AO+BO=10,AOD的周长=AO+BO+AD=1【点睛】本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键21、通信塔CD的高度约为15.9cm【解析】过点A作AECD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可【详解】过点A作AECD于E,则四边形ABDE是矩形,设CE=xcm,在RtAEC中,AEC=9
25、0,CAE=30,所以AE=xcm,在RtCDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在RtABM中,BM=cm,AE=BD,解得:x=+3,CD=CE+ED=+915.9(cm),答:通信塔CD的高度约为15.9cm【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键22、(1)详见解析;(2);(3)【解析】(1)连接OC,根据等腰三角形的性质得到A=OCA,由平行线的性质得到A=BOP,ACO=COP,等量代换得到COP=BOP,由切线的性质得到OBP=90,根据全等三角形的性质即可得到结论;(2)过O作ODAC于D,根据相似三角形
26、的性质得到CDOP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;(3)连接BC,根据勾股定理得到BC=12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论【详解】(1)连接OC,OA=OC,A=OCA,ACOP,A=BOP,ACO=COP,COP=BOP,PB是O的切线,AB是O的直径,OBP=90,在POC与POB中,COPBOP,OCP=OBP=90,PC是O的切线;(2)过O作ODAC于D,ODC=OCP=90,CD=AC,DCO=COP,ODCPCO,CDOP=OC2,OP=AC,AC=OP,CD=OP,OPOP=OC2,sinCPO=;(3
27、)连接BC,AB是O的直径,ACBC,AC=9,AB=1,BC=12,当CMAB时,d=AM,f=BM,d+f=AM+BM=1,当M与B重合时,d=9,f=0,d+f=9,d+f的取值范围是:9d+f1【点睛】本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键23、(1);(2)不能成为平行四边形,理由见解析【解析】(1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PDx轴可得出点D的坐标,再利用三
28、角形的面积公式即可用含的式子表示出MPD的面积;(2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PDx轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PDPC,由此即可得出四边形BDMC不能成为平行四边形【详解】解:(1)点在直线上,点在的图像上,设,则记的面积为,(2)当点为中点时,其坐标为,直线在轴下方的部分沿轴翻折得表示的函数表达式是:,与不能互相平分,四边形不能成为平行四边形【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面
29、积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形24、见解析【解析】根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x,由x()2+4可得当x=2,y有最小值,则可求篱笆长【详解】根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2xx()2+()2=()2+4,x4,2x1,当x=2时,y有最小值为1,由此小强确定篱笆长至少为1米故答案为:y=2x,2,1【点睛】本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式