《安徽省安庆市望江县重点达标名校2023年中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《安徽省安庆市望江县重点达标名校2023年中考数学对点突破模拟试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABC为等腰直角三角形,C=90,点P为ABC外一点,CP=,BP=3,AP的最大值是()A+3B4C5D32在反比例函数的图象的每一个分
2、支上,y都随x的增大而减小,则k的取值范围是( )Ak1Bk0Ck1Dk13如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )ABCD4如图,两根竹竿AB和AD斜靠在墙CE上,量得ABC=,ADC=,则竹竿AB与AD的长度之比为ABCD5下列图标中,既是轴对称图形,又是中心对称图形的是( )ABCD6如图所示的几何体的主视图是( )ABCD7计算1+2+22+23+22010的结果是( )A220111B22011+1CD8(3分)学校要组织足球比赛赛制为单循环形式(每两队之间赛一场)计划安排21场比赛,应邀请多少个球
3、队参赛?设邀请x个球队参赛根据题意,下面所列方程正确的是( )A B C D9下列实数中,有理数是()ABCD10运用乘法公式计算(3a)(a+3)的结果是()Aa26a+9Ba29C9a2Da23a+9二、填空题(共7小题,每小题3分,满分21分)11如图,在RtABC中,ACB=90,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=_cm12若am=5,an=6,则am+n=_13函数y=中自变量x的取值范围是_14若关于的一元二次方程有两个不相等的实数根,则的取值范围为_.15分解因式:3x2-6x+3=_16如图,用10 m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖
4、场的最大面积_m117如图,点M是反比例函数(x0)图像上任意一点,MNy轴于N,点P是x轴上的动点,则MNP的面积为A1B2C4D不能确定三、解答题(共7小题,满分69分)18(10分)如图,点在的直径的延长线上,点在上,且AC=CD,ACD=120.求证:是的切线;若的半径为2,求图中阴影部分的面积.19(5分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组
5、成“美丽”或“光明”的概率.20(8分)已知关于x的一元二次方程.求证:方程有两个不相等的实数根;如果方程的两实根为,且,求m的值21(10分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表)设月上网时间为x h(x为非负整数),请根据表中提供的信息回答下列问题(1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;(2)当35x50时,选取哪种方式能节省上网费,请说明理由22(10分)如图,在ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若
6、BD=4,求EF的长23(12分)在ABC中,AB=AC,BAC=,点P是ABC内一点,且PAC+PCA=,连接PB,试探究PA、PB、PC满足的等量关系(1)当=60时,将ABP绕点A逆时针旋转60得到ACP,连接PP,如图1所示由ABPACP可以证得APP是等边三角形,再由PAC+PCA=30可得APC的大小为 度,进而得到CPP是直角三角形,这样可以得到PA、PB、PC满足的等量关系为 ;(2)如图2,当=120时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为 24(14分)综合与探究如图,抛物线y=与x轴交于A,B两点(点A
7、在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90得到线段MD,连接CD,BD设点M运动的时间为t(t0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】过点C作,且CQ=C
8、P,连接AQ,PQ,证明根据全等三角形的性质,得到 根据等腰直角三角形的性质求出PQ的长度,进而根据,即可解决问题.【详解】过点C作,且CQ=CP,连接AQ,PQ, 在和中 AP的最大值是5.故选:C.【点睛】考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.2、A【解析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k10,解可得k的取值范围【详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k10,解得k1故选A【点评】本题考查了反比例函数的性质:当k0时,图象分别位于第一、三象限;当k0时,图
9、象分别位于第二、四象限当k0时,在同一个象限内,y随x的增大而减小;当k0时,在同一个象限,y随x的增大而增大3、B【解析】试题解析:转盘被等分成6个扇形区域,而黄色区域占其中的一个,指针指向黄色区域的概率=故选A考点:几何概率4、B【解析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在RtABC中,AB=,在RtACD中,AD=,AB:AD=:=,故选B【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题5、D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是
10、中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别6、C【解析】主视图就是从正面看,看列数和每一列的个数.【详解】解:由图可知,主视图如下故选C【点睛】考核知识点:组合体的三视图.7、A【解析】可设其和为S,则2S=2+22+23+24+22010+22011,两式相减可得答案.【详解】设S=1+2+22+23+22010则2S=2+22+23+22010+22011-得S=22011-1故选A.【点睛】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键8、B【解析】试
11、题分析:设有x个队,每个队都要赛(x1)场,但两队之间只有一场比赛,由题意得:,故选B考点:由实际问题抽象出一元二次方程9、B【解析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,等,很容易选择【详解】A、二次根2不能正好开方,即为无理数,故本选项错误,B、无限循环小数为有理数,符合;C、为无理数,故本选项错误;D、不能正好开方,即为无理数,故本选项错误;故选B.【点睛】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有、根式下开不尽的从而得到了答案10、C【解析】根据平方差公式计算可得【详解】解:(3a)(a+3)32a2
12、9a2,故选C【点睛】本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;右边是相同项的平方减去相反项的平方二、填空题(共7小题,每小题3分,满分21分)11、3【解析】试题分析:根据点D为AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为ABC的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质12、1【解析】根据同底数幂乘法性质aman=am+n,即可解题
13、.【详解】解:am+n= aman=56=1.【点睛】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.13、x且x1【解析】试题解析:根据题意得: 解得:x且x1.故答案为:x且x1.14、.【解析】根据判别式的意义得到,然后解不等式即可.【详解】解:关于的一元二次方程有两个不相等的实数根,解得:,故答案为:.【点睛】此题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.15、3(x-1)2【解析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解【详解】.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法
14、进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止16、2【解析】设与墙平行的一边长为xm,则另一面为 ,其面积=,最大面积为 ;即最大面积是2m1故答案是2【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比较简单17、A【解析】可以设出M的坐标,的面积即可利用M的坐标表示,据此即可求解【详解】设M的坐标是(m,n),则mn=2.则MN=m,的MN边上的
15、高等于n.则的面积 故选A.【点睛】考查反比例函数系数k的几何意义,是常考点,需要学生熟练掌握.三、解答题(共7小题,满分69分)18、(1)见解析(2)图中阴影部分的面积为.【解析】(1)连接OC只需证明OCD90根据等腰三角形的性质即可证明;(2)先根据直角三角形中30的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积【详解】(1)证明:连接OCACCD,ACD120,AD30OAOC,2A30OCDACD290,即OCCD,CD是O的切线;(2)解:12A60S扇形BOC在RtOCD中,D30,OD2OC4,C
16、DSRtOCDOCCD2图中阴影部分的面积为:19、 (1);(2).【解析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.【详解】(1) “美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,任取一个球,摸出球上的汉字刚好是“美”的概率P=(2)列表如下:美丽光明美-(美,丽)(光,美)(美,明)丽(美,丽)-(光,丽)(明,丽)光(美,光)(光,丽)-(光,明)明(美,明)(明,丽)(光,明)-根据表格可得:共有12中等可能的结果,其中
17、恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比20、(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的的值大于0即可;(1)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值试题解析:(1)证明:,=(m3)141(m)=m11m+9=(m1)1+80,方程有两个不相
18、等的实数根;(1),方程的两实根为,且, , ,(m3)13(m)=7,解得,m1=1,m1=1,即m的值是1或121、(1),;(2)当35x1时,选择B方式能节省上网费,见解析.【解析】(1)根据两种方式的收费标准,进行分类讨论即可求解;(2)当35x1时,计算出y1-y2的值,即可得出答案【详解】解:(1)由题意得:;即;即;(2)选择B方式能节省上网费当35x1时,有y13x45,y21:y1-y2=3x4513x2记y3x-2因为34,有y随x的增大而增大当x35时,y3所以当35x1时,有y3,即y4所以当35x1时,选择B方式能节省上网费【点睛】此题考查了一次函数的应用,注意根据
19、图表得出解题需要的信息,难度一般,正确理解收费标准求出函数解析式是解题的关键22、 (1)见解析;(1)1【解析】(1)根据角平分线的作图可得;(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为ABD的中位线可得【详解】(1)如图,射线CF即为所求;(1)CAD=CDA,AC=DC,即CAD为等腰三角形;又CF是顶角ACD的平分线,CF是底边AD的中线,即F为AD的中点,E是AB的中点,EF为ABD的中位线,EF=BD=1【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键23、(1)150,(1)证明见解析(3) 【解析】
20、(1)根据旋转变换的性质得到PAP为等边三角形,得到PPC90,根据勾股定理解答即可;(1)如图1,作将ABP绕点A逆时针旋转110得到ACP,连接PP,作ADPP于D,根据余弦的定义得到PPPA,根据勾股定理解答即可;(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可试题解析:【详解】解:(1)ABPACP,APAP,由旋转变换的性质可知,PAP60,PCPB,PAP为等边三角形,APP60,PACPCA60 30,APC150,PPC90,PP1PC1PC1,PA1PC1PB1,故答案为150,PA1PC1PB1;(1)如图,作,使,连接,过点A作AD于D点,即,A
21、BAC,. , AD,.在Rt中,.,.在Rt中,.;(3)如图1,与(1)的方法类似,作将ABP绕点A逆时针旋转得到ACP,连接PP,作ADPP于D,由旋转变换的性质可知,PAP,PCPB,APP90,PACPCA,APC180,PPC(180)(90)90,PP1PC1PC1,APP90,PDPAcos(90)PAsin,PP1PAsin,4PA1sin1PC1PB1,故答案为4PA1sin1PC1PB1【点睛】本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键24、(1)A(3,0),y=x+;(2)D(t3+
22、,t3),CD最小值为;(3)P(2,),理由见解析.【解析】(1)当y=0时,=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;(2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;(3)分当点M在AO上运动时,即0t3时,当点M在OB上运动时,即3t4时,进行讨论可求P点坐标【详解】(1)当y=0时,=0,解得x1=1,x2=3,点A在点B的左侧,A(3,0),B(1,0),
23、由解析式得C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk,故直线l的表达式为y=x+;(2)当点M在AO上运动时,如图:由题意可知AM=t,OM=3t,MCMD,过点D作x轴的垂线垂足为N,DMN+CMO=90,CMO+MCO=90,MCO=DMN,在MCO与DMN中,MCODMN,MN=OC=,DN=OM=3t,D(t3+,t3);同理,当点M在OB上运动时,如图,OM=t3,MCODMN,MN=OC=,ON=t3+,DN=OM=t3,D(t3+,t3)综上得,D(t3+,t3)将D点坐标代入直线解析式得t=62,线段CD是等腰直角三角形CMD斜边,若CD最小,则
24、CM最小,M在AB上运动,当CMAB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;(3)当点M在AO上运动时,如图,即0t3时,tanCBO=,CBO=60,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=3t,AN=t+,NB=4t,tanNBO=,=,解得t=3,经检验t=3是此方程的解,过点P作x轴的垂线交于点Q,易知PQBDNB,BQ=BN=4t=1,PQ=,OQ=2,P(2,);同理,当点M在OB上运动时,即3t4时,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=t3,NB=t3+1=t4+,tanNBD=, =,解得t=3,经检验t=3是此方程的解,t=3(不符合题意,舍)故P(2,)【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度