《陕西省西安音乐学院附中2023届中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省西安音乐学院附中2023届中考数学押题卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A25和30B25和29C28和30D28和292如图是抛物线y1=ax2+bx+c(a0)图象的一部分,其顶点坐标为A(1,3),与x轴的一个交点为B(3,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论:abc0;不等式ax2+(bm)x+cn0的解集为3x1;抛物线与x轴的另一个交点是(3,0);方程ax2+bx+c+3
3、=0有两个相等的实数根;其中正确的是()ABCD3运用乘法公式计算(4+x)(4x)的结果是()Ax216B16x2C168x+x2D8x24如果解关于x的分式方程时出现增根,那么m的值为A-2B2C4D-45通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )A10.7104B1.07105C1.7104D1.071046九章算术是中国传统数学的重要著作,方程术是它的最高成就其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设
4、合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )ABCD7函数y=中,x的取值范围是()Ax0Bx2Cx2Dx28如图,平行四边形 ABCD 中, E为 BC 边上一点,以 AE 为边作正方形AEFG,若 ,则 的度数是 ABCD9已知二次函数的图象如图所示,则下列说法正确的是( )A0B0C0D010如图,中,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为( )A4B5C6D711在同一平面直角坐标系中,函数y=x+k与(k为常数,k0)的图象大致是()ABCD12点P(2,5)关于y轴对称的点的坐标为()A(2,5)B(5,2)C(2,5)D(2,5)二、填空题:(本大题共
5、6个小题,每小题4分,共24分)13如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且ABx轴,则以AB为边的等边三角形ABC的周长为 .14如图,四边形ABCD中,ABCD,ADC=90,P从A点出发,以每秒1个单位长度的速度,按ABCD的顺序在边上匀速运动,设P点的运动时间为t秒,PAD的面积为S,S关于t的函数图象如图所示,当P运动到BC中点时,PAD的面积为_15关于x的一元二次方程kx22x+1=0有两个不相等的实数根,则k的取值范围是 16如图,这是怀柔区部分景点的分布图,若表示百泉山风景区的点的坐标为,表示慕田峪长城的点的坐标为,则表示雁栖湖的点的
6、坐标为_17的算术平方根为_18如图,在RtABC中,E是斜边AB的中点,若AB10,则CE_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD(1)求证:四边形CDBF是平行四边形;(2)若FDB=30,ABC=45,BC=4,求DF的长20(6分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,
7、记下卡片上的数字,然后将这两数相加(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?21(6分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;如果这所中学共有学生180
8、0名,那么请你估计最喜爱科普类书籍的学生人数22(8分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率23(8分)如图,已知O的直径AB=10,弦AC=6,BAC的平分线交O于点D,过点D作DEAC交AC的延长线于点E求证:DE是O的切线求DE的长24(10分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,五个等级将所得数据绘制成如下统计图根据图中信息,解答下列问题:该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男
9、生的跳绳成绩的中位数在_等级;(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数25(10分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图假设你站在A处测得塔杆顶端C的仰角是55,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BGHG,CHAH,求塔杆CH的高(参考数据:tan551.4,tan350.7,sin550.8,sin350.6)26
10、(12分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率27(12分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造如图,为体育馆改造的截面示意图已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角ABC为45,原坡脚B与场馆中央的运动区边界的安全距离BD为5米如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角EFG为37若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保
11、持2.5米(即FD2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由(参考数据:sin37,tan37)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,这组数据的中位数是28,在这组数据中,29出现的次数最多,这组数据的众数是29,故选D【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数
12、据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.2、D【解析】错误由题意a1b1,c1,abc1;正确因为y1=ax2+bx+c(a1)图象与直线y2=mx+n(m1)交于A,B两点,当ax2+bx+cmx+n时,-3x-1;即不等式ax2+(b-m)x+c-n1的解集为-3x-1;故正确;错误抛物线与x轴的另一个交点是(1,1);正确抛物线y1=ax2+bx+c(a1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故正确【详解】解:抛物线开口向上,a1,抛物线交y轴于负半轴,c1,对称轴在y轴左边,- 1,b1,ab
13、c1,故错误y1=ax2+bx+c(a1)图象与直线y2=mx+n(m1)交于A,B两点,当ax2+bx+cmx+n时,-3x-1;即不等式ax2+(b-m)x+c-n1的解集为-3x-1;故正确,抛物线与x轴的另一个交点是(1,1),故错误,抛物线y1=ax2+bx+c(a1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故正确故选:D【点睛】本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题3、B【解析】根据平方差公式计算即可得解【详解】,故选:B【点睛】本题主要考查
14、了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.4、D【解析】,去分母,方程两边同时乘以(x1),得:m+1x=x1,由分母可知,分式方程的增根可能是1当x=1时,m+4=11,m=4,故选D5、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:10700=1.07104,故选:D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值
15、以及n的值6、C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x人,物价为y钱,根据题意得故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.7、D【解析】试题分析:由分式有意义的条件得出x+10,解得x1故选D点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键8、A【解析】分析:首先求出AEB,再利用三角形内角和定理求出B,最后利用平行四边形的性质得D=B即可解决问题详解:四边形ABCD是正方形,AEF=90,CEF=15,AEB=180-90-
16、15=75,B=180-BAE-AEB=180-40-75=65,四边形ABCD是平行四边形,D=B=65故选A点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型9、B【解析】根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y0,确定a+b+c的符号【详解】解:抛物线开口向上,a0,抛物线交于y轴的正半轴,c0,ac0,A错误;-0,a0,b0,B正确;抛物线与x轴有两个交点,b2-4ac0,C错误;当x=1时,y
17、0,a+b+c0,D错误;故选B【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定10、B【解析】先利用已知证明,从而得出,求出BD的长度,最后利用求解即可【详解】 故选:B【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键11、B【解析】选项A中,由一次函数y=x+k的图象知k0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k0,由反比例函数y=的图象知k0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误
18、故选B.12、D【解析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案【详解】点关于y轴对称的点的坐标为,故选:D【点睛】本题主要考查了平面直角坐标系中点的对称,熟练掌握点的对称特点是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、18。【解析】根据二次函数的性质,抛物线的对称轴为x=3。A是抛物线与y轴的交点,点B是这条抛物线上的另一 点,且ABx轴。A,B关于x=3对称。AB=6。又ABC是等边三角形,以AB为边的等边三角形ABC的周长为63=18。14、1【解析】解:由图象可知,AB+BC=6,AB+BC+CD=10,CD=4,根据题意可知
19、,当P点运动到C点时,PAD的面积最大,SPAD=ADDC=8,AD=4,又SABD=ABAD=2,AB=1,当P点运动到BC中点时,PAD的面积=(AB+CD)AD=1,故答案为115、k1且k1【解析】试题分析:根据一元二次方程的定义和的意义得到k1且1,即(2)24k11,然后解不等式即可得到k的取值范围解:关于x的一元二次方程kx22x+1=1有两个不相等的实数根,k1且1,即(2)24k11,解得k1且k1k的取值范围为k1且k1故答案为k1且k1考点:根的判别式;一元二次方程的定义16、【解析】直接利用已知点坐标得出原点位置,进而得出答案【详解】解:如图所示:雁栖湖的点的坐标为:(
20、1,-3)故答案为(1,-3)【点睛】本题考查坐标确定位置,正确得出原点的位置是解题关键17、【解析】首先根据算术平方根的定义计算先=2,再求2的算术平方根即可【详解】=2,的算术平方根为【点睛】本题考查了算术平方根,属于简单题,熟悉算数平方根的概念是解题关键.18、5【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=AB=5.考点:直角三角形斜边上的中线三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)1.【解析】(1)先证明出CEFBED,得出CF=BD即可证明四边形CDBF是平行四边形;(2)作EMDB于点M
21、,根据平行四边形的性质求出BE,DF的值,再根据三角函数值求出EM的值,EDM=30,由此可得出结论【详解】解:(1)证明:CFAB,ECF=EBDE是BC中点,CE=BECEF=BED,CEFBEDCF=BD四边形CDBF是平行四边形(2)解:如图,作EMDB于点M,四边形CDBF是平行四边形,BC=,DF=2DE在RtEMB中,EM=BEsinABC=2,在RtEMD中,EDM=30,DE=2EM=4,DF=2DE=1【点睛】本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.20、(1)详见解析;(2)4分.【解析】(1)根
22、据题意用列表法求出答案;(2)算出甲乙获胜的概率,从而求出乙胜一次的得分.【详解】(1)列表如下:由列表可得:P(数字之和为5),(2)因为P(甲胜),P(乙胜),甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:1234分.【点睛】本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.21、(1)一共调查了300名学生(2)(3)体育部分所对应的圆心角的度数为48(4)1800名学生中估计最喜爱科普类书籍的学生人数为1【解析】(1)用文学的人数除以所占的百分比计算即可得解(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可(3)用体育所占的百
23、分比乘以360,计算即可得解(4)用总人数乘以科普所占的百分比,计算即可得解【详解】解:(1)9030%=300(名),一共调查了300名学生(2)艺术的人数:30020%=60名,其它的人数:30010%=30名补全折线图如下:(3)体育部分所对应的圆心角的度数为:360=48(4)1800=1(名),1800名学生中估计最喜爱科普类书籍的学生人数为122、【解析】根据列表法先画出列表,再求概率.【详解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之
24、和为偶数的有4种,所以P(数字之和都是偶数)【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键.23、 (1)详见解析;(2)4.【解析】试题分析:(1)连结OD,由AD平分BAC,OA=OD,可证得ODA=DAE,由平行线的性质可得ODAE,再由DEAC即可得OEDE,即DE是O的切线;(2)过点O作OFAC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,AD平分BAC,DAE=DAB,OA=OD,ODA=DAO,ODA=DAE,ODAE,DEACOEDEDE是O的切线;(2)过点O作OFA
25、C于点F,AF=CF=3,OF=,OFE=DEF=ODE=90,四边形OFED是矩形,DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.24、(1)C;(2)100【解析】(1)根据中位数的定义即可作出判断;(2)先算出样本中C等级的百分比,再用总数乘以400即可.【详解】解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;故答案为C.(2)400 =100(人)答:估计该校九年级男生跳绳成绩是等级的人数有100人.【点睛】本题考查了中位数的求法和用样本数
26、估计总体数据,理解相关知识是解题的关键.25、1米【解析】试题分析:作BEDH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtanCAH=tan55x知CE=CHEH=tan55x10,根据BE=DE可得关于x的方程,解之可得试题解析:解:如图,作BEDH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在RtACH中,CH=AHtanCAH=tan55x,CE=CHEH=tan55x10,DBE=45,BE=DE=CE+DC,即43+x=tan55x10+35,解得:x45,CH=tan55x=1.445=1答:塔杆C
27、H的高为1米点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形26、(1)P=;(2)P=.【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=; (2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,所以甲乙丙到
28、同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.点睛:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比27、不满足安全要求,理由见解析【解析】在RtABC中,由ACB=90,AC=15m,ABC=45可求得BC=15m;在RtEGD中,由EGD=90,EG=15m,EFG=37,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=22.5,由此可知:“设计方案不满足安全要求”.【详解】解:施工方提供的设计方案不满足安全要求,理由如下:在RtABC中,AC=15m,ABC=45,BC=15m在RtEFG中,EG=15m,EFG=37,GF=20mEG=AC=15m,ACBC,EGBC,EGAC,四边形EGCA是矩形,GC=EA=2m,DF=GC+BC+BD-GF=2+15+5-20=22.5.施工方提供的设计方案不满足安全要求