陕西省西安音乐学院附中2023年毕业升学考试模拟卷数学卷含解析.doc

上传人:茅**** 文档编号:88314264 上传时间:2023-04-25 格式:DOC 页数:15 大小:559.50KB
返回 下载 相关 举报
陕西省西安音乐学院附中2023年毕业升学考试模拟卷数学卷含解析.doc_第1页
第1页 / 共15页
陕西省西安音乐学院附中2023年毕业升学考试模拟卷数学卷含解析.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《陕西省西安音乐学院附中2023年毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省西安音乐学院附中2023年毕业升学考试模拟卷数学卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1a的倒数是3,则a的值是()ABC3D32方程的解为()Ax=4Bx=3Cx=6D此方程无解3如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是ABCD34某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图

2、书平均每本书的价格是文学类图书平均每本书价格的1.2倍已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()ABCD5如图,将ABC绕点B顺时针旋转60得DBE,点C的对应点E恰好落在AB延长线上,连接AD下列结论一定正确的是()AABDEBCBECCADBCDADBC6下列各数中是有理数的是()AB0CD7商场将某种商品按原价的8折出售,仍可获利20元已知这种商品的进价为140元,那么这种商品的原价是()A160元 B180元 C200元 D2

3、20元8在0.3,3,0,这四个数中,最大的是()A0.3B3C0D9二次函数yax2+bx+c(a0)的图象如图,给出下列四个结论:4acb20;3b+2c0;4a+c2b;m(am+b)+ba(m1),其中结论正确的个数是()A1B2C3D410如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在lx3的范围内有解,则t的取值范围是( ) A-5t4B3t4C-5t-5二、填空题(本大题共6个小题,每小题3分,共18分)11如图所示,在菱形ABCD中,AB=4,BAD=120,AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,

4、且E、F不与B、C、D重合当点E、F在BC、CD上滑动时,则CEF的面积最大值是_12如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若DEF的面积为,则k的值_ 13如图,在正方形ABCD中,O是对角线AC、BD的交点,过O点作OEOF,OE、OF分别交AB、BC于点E、点F,AE=3,FC=2,则EF的长为_14如图,已知ABCD,=_15圆柱的底面半径为1,母线长为2,则它的侧面积为_(结果保留)16直线AB,BC,CA的位置关系如图所示,则下列语句:点A在直线BC上;直线AB经过点C;直线AB,BC,CA两两相交;点B是直线AB,BC,CA的公共

5、点,正确的有_(只填写序号)三、解答题(共8题,共72分)17(8分)为了弘扬学生爱国主义精神,充分展现新时期青少年良好的思想道德素质和精神风貌,丰富学生的校园生活,陶冶师生的情操,某校举办了“中国梦爱国情成才志”中华经典诗文诵读比赛九(1)班通过内部初选,选出了丽丽和张强两位同学,但学校规定每班只有1个名额,经过老师与同学们商量,用所学的概率知识设计摸球游戏决定谁去,设计的游戏规则如下:在A、B两个不透明的箱子分别放入黄色和白色两种除颜色外均相同的球,其中A箱中放置3个黄球和2个白球;B箱中放置1个黄球,3个白球,丽丽从A箱中摸一个球,张强从B箱摸一个球进行试验,若两人摸出的两球都是黄色,则

6、丽丽去;若两人摸出的两球都是白色,则张强去;若两人摸出球颜色不一样,则放回重复以上动作,直到分出胜负为止根据以上规则回答下列问题:(1)求一次性摸出一个黄球和一个白球的概率;(2)判断该游戏是否公平?并说明理由18(8分)观察与思考:阅读下列材料,并解决后面的问题在锐角ABC中,A、B、C的对边分别是a、b、c,过A作ADBC于D(如图(1)),则sinB=,sinC=,即ADcsinB,ADbsinC,于是csinBbsinC,即,同理有:,所以即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素根据

7、上述材料,完成下列各题(1)如图(2),ABC中,B45,C75,BC60,则A ;AC ;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30的方向上,随后以40海里/时的速度按北偏东30的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75的方向上,求此时渔政204船距钓鱼岛A的距离AB(结果精确到0.01,2.449)19(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘

8、制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数20(8分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个

9、田赛项目的概率 P1,利用列表法或树状图加以说明;该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 21(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线求证:ADECBF;若ADB是直角,则四边形BEDF是什么四边形?证明你的结论22(10分)计算:4cos30+|3|()1+(2018)023(12分)如图,在五边形ABCDE中,C100,D75,E135,AP平分EAB,BP平分ABC,求P的度数24如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m0)的图象交于点A(3,1),且过点B(0,2)(1)求反比例函数和一

10、次函数的表达式;(2)如果点P是x轴上一点,且ABP的面积是3,求点P的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据倒数的定义进行解答即可【详解】a的倒数是3,3a=1,解得:a=故选A【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数2、C【解析】先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.【详解】方程两边同时乘以x2得到1(x2)3,解得x6.将x6代入x2得624,x6就是原方程的解.故选C【点睛】本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.3、B【解析】如果点A,B表示的数的绝对值相等,那么AB的中点即为

11、坐标原点【详解】解:如图,AB的中点即数轴的原点O根据数轴可以得到点A表示的数是故选:B【点睛】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键4、B【解析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:故选B【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程5、C【解析】根据旋转的性

12、质得,ABDCBE=60, EC, 则ABD为等边三角形,即 ADAB=BD,得ADB=60因为ABDCBE=60,则CBD=60,所以,ADB=CBD,得ADBC.故选C.6、B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案【详解】A、是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、是无理数,故本选项错误,故选B【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键7、C【解析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可【详解】解:设原价为x元,

13、根据题意可得:80%x=140+20,解得:x=1所以该商品的原价为1元;故选:C【点睛】此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键8、A【解析】根据正数大于0,0大于负数,正数大于负数,比较即可【详解】-3-00.3最大为0.3故选A【点睛】本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型9、C【解析】试题解析:图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b24ac0,4acb20,正确;=1,b=2a,a+b+c0,b+b+c0,3b+2c0,是正确;当x=2时,y0,4a2b+c0,4a+c2

14、b,错误;由图象可知x=1时该二次函数取得最大值,ab+cam2+bm+c(m1)m(am+b)ab故正确正确的有三个,故选C考点:二次函数图象与系数的关系【详解】请在此输入详解!10、B【解析】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1x3的范围内有公共点可确定t的范围【详解】 抛物线y=-x2+mx的对称轴为直线x=2, , 解之:m=4, y=-x2+4x, 当x=2时,y=-4+8=4, 顶点坐标为(2,4), 关于x的-元二次方程-x2

15、+mx-t=0 (t为实数)在lx3的范围内有解, 当x=1时,y=-1+4=3, 当x=2时,y=-4+8=4, 3t4, 故选:B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质二、填空题(本大题共6个小题,每小题3分,共18分)11、 【解析】解:如图,连接AC,四边形ABCD为菱形,BAD=120,1+EAC=60,3+EAC=60,1=3,BAD=120,ABC=60,ABC和ACD为等边三角形,4=60,AC=AB在ABE和ACF中,1=3,AC=AC,ABC=4,

16、ABEACF(ASA),SABE=SACF,S四边形AECF=SAEC+SACF=SAEC+SABE=SABC,是定值,作AHBC于H点,则BH=2,S四边形AECF=SABC=BCAH=BC=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又SCEF=S四边形AECFSAEF,则此时CEF的面积就会最大,SCEF=S四边形AECFSAEF= =故答案为:.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据ABEACF,得出四边形AECF的面积是定值是解题的关键1

17、2、1【解析】利用对称性可设出E、F的两点坐标,表示出DEF的面积,可求出k的值【详解】解:设AFa(a2),则F(a,2),E(2,a),FDDE2a,SDEFDFDE,解得a或a(不合题意,舍去),F(,2),把点F(,2)代入解得:k1,故答案为1【点睛】本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键13、 【解析】由BOFAOE,得到BE=FC=2,在直角BEF中,从而求得EF的值【详解】正方形ABCD中,OB=OC,BOC=EOF=90,EOB=FOC,在BOE和COF中,BOECOF(ASA)BE=FC=2,同理BF=AE=3,在RtBEF中,BF=3,

18、BE=2,EF=故答案为【点睛】本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长14、85【解析】如图,过F作EFAB,而ABCD,ABCDEF,ABF+BFE=180,EFC=C,=180ABF+C=180120+25=85故答案为85.15、4 【解析】根据圆柱的侧面积公式,计算即可【详解】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2rl=212=4故答案为:4【点睛】题考查了圆柱的侧面积公式应用问题,是基础题16、【解析】根据直线与点的位置关系即可求解【详解】点A在直线BC上是错误的;直线AB经过点C是错误

19、的;直线AB,BC,CA两两相交是正确的;点B是直线AB,BC,CA的公共点是错误的故答案为【点睛】本题考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义三、解答题(共8题,共72分)17、 (1);(2)不公平,理由见解析【解析】(1)画树状图列出所有等可能结果数,找到摸出一个黄球和一个白球的结果数,根据概率公式可得答案;(2)结合(1)种树状图根据概率公式计算出两人获胜的概率,比较大小即可判断【详解】(1)画树状图如下:由树状图可知共有20种等可能结果,其中一次性摸出一个黄球和一个白球的有11种结果,一次性摸出一个黄球和一个白球的概率为;(2)不公平,由(1)种树状图可知,丽丽去

20、的概率为,张强去的概率为=,该游戏不公平【点睛】本题考查了列表法与树状图法,解题的关键是根据题意画出树状图.18、(1)60,20;(2)渔政船距海岛A的距离AB约为24.49海里【解析】(1)利用题目总结的正弦定理,将有关数据代入求解即可;(2)在ABC中,分别求得BC的长和三个内角的度数,利用题目中总结的正弦定理求AC的长即可【详解】(1)由正玄定理得:A60,AC20;故答案为60,20;(2)如图:依题意,得BC400.520(海里)CDBE,DCBCBE180.DCB30,CBE150.ABE75,ABC75,A45.在ABC中,即,解得AB1024.49(海里)答:渔政船距海岛A的

21、距离AB约为24.49海里【点睛】本题考查了方向角的知识,更重要的是考查了同学们的阅读理解能力,通过材料总结出学生们没有接触的知识,并根据此知识点解决相关的问题,是近几年中考的高频考点19、 (1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:3050%=60(人);扇形统计图中“基本了解”部分所对应扇形

22、的圆心角为:360=90;故答案为60,90;(2)60153010=5;补全条形统计图得:(3)根据题意得:900=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.20、(1);(1) ;(3);【解析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径

23、赛项目的概率P1【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1=;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1=故答案为考点:列表法与树状图法21、(1)证明见解析;(2)若ADB是直角,则四边形BEDF是菱形,理由见解析.【解析】(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,A=C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定ADECBF;(2)先证明BE与

24、DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以ADEF,又ADBD,所以BDEF,根据菱形的判定可以得到四边形是菱形【详解】(1)证明:四边形ABCD是平行四边形,AD=BC,AB=CD,A=C,E、F分别为边AB、CD的中点,AE=AB,CF=CD,AE=CF,在ADE和CBF中,ADECBF(SAS);(2)若ADB是直角,则四边形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又ABCD,BEDF,BE=DF,四边形BEDF是平行四边形,连接EF,在ABCD中,E、F分别为边AB、C

25、D的中点,DFAE,DF=AE,四边形AEFD是平行四边形,EFAD,ADB是直角,ADBD,EFBD,又四边形BFDE是平行四边形,四边形BFDE是菱形【点睛】1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定22、1 【解析】直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案【详解】原式=1+232+1=2+21=11【点睛】此题主要考查了实数运算,正确化简各数是解题关键23、65【解析】EAB+ABC+C+D+E=(5-2)180=540,C=100,D=75,E=135,EAB+ABC=540-C-D-E=230.AP平分EAB,P

26、AB=12EAB.同理可得,ABP=ABC.P+PAB+PBA=180,P=180-PAB-PBA=180-EAB-ABC=180-(EAB+ABC)=180-230=65.24、(1)y=;y=x-2;(2)(0,0)或(4,0)【解析】试题分析:(1)利用待定系数法即可求得函数的解析式; (2)首先求得AB与x轴的交点,设交点是C,然后根据SABP=SACP+SBCP即可列方程求得P的横坐标试题解析:(1)反比例函数y=(m0)的图象过点A(1,1), 1= m=1 反比例函数的表达式为y= 一次函数y=kx+b的图象过点A(1,1)和B(0,-2) , 解得:, 一次函数的表达式为y=x-2; (2)令y=0,x-2=0,x=2, 一次函数y=x-2的图象与x轴的交点C的坐标为(2,0) SABP=1, PC1+PC2=1 PC=2, 点P的坐标为(0,0)、(4,0)【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据SABP=SACP+SBCP列方程是关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁