《重庆市第一中学2022-2023学年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《重庆市第一中学2022-2023学年中考适应性考试数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,已知是中的边上的一点,的平分线交边于,交于,那么下列结论中错误的是( )ABACBDABBFABECCBDFBECDBDFBAE2下列因式分解正确的是( )Ax2+9=(x
2、+3)2Ba2+2a+4=(a+2)2Ca3-4a2=a2(a-4)D1-4x2=(1+4x)(1-4x)3下列计算正确的是Aa2a22a4 B(a2)3a6 C3a26a23a2 D(a2)2a244下列运算正确的是()Aa3a2=a6B(a2)3=a5C =3D2+=25在平面直角坐标系中,若点A(a,b)在第一象限内,则点B(a,b)所在的象限是()A第一象限 B第二象限 C第三象限 D第四象限6如图,在ABC中,ACB=90,A=30,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF
3、的长为()A5B6C7D87如果k0,b0,那么一次函数y=kx+b的图象经过( )A第一、二、三象限B第二、三、四象限C第一、三、四象限D第一、二、四象限8下列函数中,y关于x的二次函数是( )Ayax2+bx+cByx(x1)Cy=Dy(x1)2x29如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )ABCD10下列运算正确的是()Aa6a2=a3 B(2a+b)(2ab)=4a2b2 C(a)2a3=a6 D5a+2b=7ab11下列各式计算正确的是()Aa4a3=a12B3a4a=12aC(a3)4=a12Da12a3=a412抛物线的顶点坐标是( )A(2,3)B
4、(-2,3)C(2,-3)D(-2,-3)二、填空题:(本大题共6个小题,每小题4分,共24分)13图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程_.14在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是_15如图,在平面直角坐标系xOy中,直线l:y=x-与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于
5、点B3,以A2B3为边长作等边三角形A3A2B3,按此规律进行下去,则点A3的横坐标为_;点A2018的横坐标为_168的立方根为_.17如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:BE=2AE;DFPBPH;PFDPDB;DP2=PHPC其中正确的是_(填序号)18分解因式(xy1)2(x+y2xy)(2xy)=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AD是ABC的中线,AD12,AB13,BC10,求AC长20(6分)在下列的网格图中.每
6、个小正方形的边长均为1个单位,在RtABC中,C=90,AC=3,BC=4.(1)试在图中作出ABC以A为旋转中心,沿顺时针方向旋转90后的图形AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与ABC关于原点对称的图形A2B2C2,并标出B2、C2两点的坐标.21(6分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加(1)请用列表或画树状图的
7、方法求两数和为5的概率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?22(8分)我市计划将某村的居民自来水管道进行改造该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成则该工程施工费用是多少?23(8分)如图,在平面
8、直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点动点C、D分别在直线AB、OB上,将BCD沿着CD折叠,得BCD()如图1,若CDAB,点B恰好落在点A处,求此时点D的坐标;()如图2,若BD=AC,点B恰好落在y轴上,求此时点C的坐标;()若点C的横坐标为2,点B落在x轴上,求点B的坐标(直接写出结果即可)24(10分)计算:(1)22sin45+(2018)0+|25(10分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A放下自我,彼此尊重; B放下利益,彼此平衡;C放下性格,彼此成就; D合理竞争,合作双赢要求每人选取其中一个观点
9、写出自己的感悟根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:观点频数频率Aa0.2B120.24C8bD200.4(1)参加本次讨论的学生共有 人;表中a ,b ;(2)在扇形统计图中,求D所在扇形的圆心角的度数;(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率26(12分)学生对待学习的态度一直是教育工作者关注的问题之一为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习
10、不感兴趣),并将调查结果绘制成图和图的统计图(不完整)请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了 名学生;将图补充完整;求出图中C级所占的圆心角的度数.27(12分)列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车已知小张家距上班地点10千米他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍小张用骑公共自行车方式上班平均每小时行驶多少千米?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项
11、中,只有一项是符合题目要求的)1、C【解析】根据相似三角形的判定,采用排除法,逐项分析判断【详解】BAD=C,B=B,BACBDA故A正确BE平分ABC,ABE=CBE,BFABEC故B正确BFA=BEC,BFD=BEA,BDFBAE故D正确而不能证明BDFBEC,故C错误故选C【点睛】本题考查相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角2、C【解析】试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(12x)故选C,考点:因式分解【详解】请在此输入详解!3、B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式
12、逐项进行计算即可得.【详解】A. a2a2a4 ,故A选项错误;B. (a2)3a6 ,正确;C. 3a26a2-3a2 ,故C选项错误;D. (a2)2a24a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.4、C【解析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项【详解】解:A. a3a2=a5,原式计算错误,故本选项错误;B. (a2)3=a6,原式计算错误,故本选项错误;C. =3,原式计算正确,故本选项正确;D. 2和不是同类项,不能合并,故本选项错误故选
13、C.【点睛】本题考查了幂的乘方与积的乘方, 实数的运算, 同底数幂的乘法,解题的关键是幂的运算法则.5、D【解析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】点A(a,-b)在第一象限内,a0,-b0,b0,点B(a,b)在第四象限,故选D【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负6、B【解析】试题分析:连接CD,在ABC中,ACB=90,A=30,BC=4,AB=2BC=1作法可知BC=CD=4,CE是线段BD的垂直平分线,CD是斜边AB的中线,BD=
14、AD=4,BF=DF=2,AF=AD+DF=4+2=2故选B考点:作图基本作图;含30度角的直角三角形7、D【解析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限【详解】k0,一次函数y=kx+b的图象经过第二、四象限又b0时,一次函数y=kx+b的图象与y轴交与正半轴综上所述,该一次函数图象经过第一、二、四象限故选D【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系k0时,直线必经过一、三象限k0时,直线必经过二、四象限b0时,直线与y轴正半轴相交b=0时,直线过原点;b0时,直线与y轴负半轴
15、相交8、B【解析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时, y=ax2+bx+c= bx+c,不是二次函数,故不符合题意; B. y=x(x1)=x2-x,是二次函数,故符合题意;C. 的自变量在分母中,不是二次函数,故不符合题意; D. y=(x1)2x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a0)的函数叫做二次函数,
16、据此求解即可.9、A【解析】观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1故选A【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图10、B【解析】A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;D选项:两项不是同类项,故不能进行合并【详解】A选项:a6a2=a4,故本选项错误;B选项:(2a+b)(2a-b)=4a2-b2,故
17、本选项正确;C选项:(-a)2a3=a5,故本选项错误;D选项:5a与2b不是同类项,不能合并,故本选项错误;故选:B【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断11、C【解析】根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D【详解】Aa4a3=a7,故A错误;B3a4a=12a2,故B错误;C(a3)4=a12,故C正确;Da12a3=a9,故D错误故选C【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键12、A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点
18、坐标【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3)故选A【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h二、填空题:(本大题共6个小题,每小题4分,共24分)13、先将图2以点A为旋转中心逆时针旋转,再将旋转后的图形向左平移5个单位【解析】变换图形2,可先旋转,然后平移与图2拼成一个矩形【详解】先将图2以点A为旋转中心逆时针旋转90,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形故答案为:先将图2以点A为旋转中心逆时针旋转90,再将旋转后的图形向左平移5个单位【点睛
19、】本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等14、 【解析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案【详解】在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种,从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:.故答案为.15、 【解析】利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点An坐标的变化即可得出结论【详解
20、】当y=0时,有x-=0,解得:x=1,点B1的坐标为(1,0),A1OB1为等边三角形,点A1的坐标为(,)当y=时有x-=,解得:x=,点B2的坐标为(,),A2A1B2为等边三角形,点A2的坐标为(,)同理,可求出点A3的坐标为(,),点A2018的坐标为(,)故答案为;【点睛】本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点An横坐标的变化是解题的关键16、2.【解析】根据立方根的定义可得8的立方根为2.【点睛】本题考查了立方根.17、【解析】由正方形的性质和相似三角形的判定与性质,即可得出结论【详解】
21、BPC是等边三角形,BP=PC=BC,PBC=PCB=BPC=60,在正方形ABCD中,AB=BC=CD,A=ADC=BCD=90ABE=DCF=30,BE=2AE;故正确;PC=CD,PCD=30,PDC=75,FDP=15,DBA=45,PBD=15,FDP=PBD,DFP=BPC=60,DFPBPH;故正确;FDP=PBD=15,ADB=45,PDB=30,而DFP=60,PFDPDB,PFD与PDB不会相似;故错误;PDH=PCD=30,DPH=DPC,DPHCPD,DP2=PHPC,故正确;故答案是:【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题
22、的关键是熟练掌握性质和定理18、(y1)1(x1)1【解析】解:令x+y=a,xy=b,则(xy1)1(x+y1xy)(1xy)=(b1)1(a1b)(1a)=b11b+1+a11a1ab+4b=(a11ab+b1)+1b1a+1=(ba)1+1(ba)+1=(ba+1)1;即原式=(xyxy+1)1=x(y1)(y1)1=(y1)(x1)1=(y1)1(x1)1故答案为(y1)1(x1)1点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体
23、,利用上述方法因式分解的能力.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、2.【解析】根据勾股定理逆定理,证ABD是直角三角形,得ADBC,可证AD垂直平分BC,所以AB=AC.【详解】解:AD是ABC的中线,且BC=10,BD=BC=112+122=22,即BD2+AD2=AB2,ABD是直角三角形,则ADBC,又CD=BD,AC=AB=2【点睛】本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.20、(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标
24、为(3,-5),点C2的坐标为(3,-1).【解析】(1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;(2)根据点B的坐标画出平面直角坐标系;(3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.【详解】(1)A如图所示;(2)如图所示,A(0,1),C(3,1);(3)如图所示,(3,5),(3,1)21、(1)详见解析;(2)4分.【解析】(1)根据题意用列表法求出答案;(2)算出甲乙获胜的概率,从而求出乙胜一次的得分.【详解】(1)列表如下:由列表可得:P(数字之和为5),(2)因为P(甲胜),P(乙胜),甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为
25、:1234分.【点睛】本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.22、(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可(2)先计算甲、乙合作需要的时间,然后计算费用即可【详解】解:(1)设这项工程规定的时间是x天 根据题意,得 解得x20经检验,x20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间(天)(65003500)12120000(元)答:该工程施工费用是120000元【点睛】本题考查
26、了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答23、(1)D(0,);(1)C(116,1118);(3)B(1+,0),(1,0).【解析】(1)设OD为x,则BD=AD=3,在RTODA中应用勾股定理即可求解;(1)由题意易证BDCBOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CEAO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=BC,再利用特殊角的三角函数可逐一求解.【详解】()设OD为x,点A(3
27、,0),点B(0,),AO=3,BO=AB=6折叠BD=DA在RtADO中,OA1+OD1=DA19+OD1=(OD)1OD=D(0,)()折叠BDC=CDO=90CDOA且BD=AC,BD=18OD=(18)=18tanABO=,ABC=30,即BAO=60tanABO=,CD=116D(116,1118)()如图:过点C作CEAO于ECEAOOE=1,且AO=3AE=1,CEAO,CAE=60ACE=30且CEAOAC=1,CE=BC=ABACBC=61=4若点B落在A点右边,折叠BC=BC=4,CE=,CEOABE=OB=1+B(1+,0)若点B落在A点左边,折叠BC=BC=4,CE=,
28、CEOABE=OB=1B(1,0)综上所述:B(1+,0),(1,0)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B点的两种情况是解题关键.24、1【解析】原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果【详解】解:原式=11+1+=1+1+=1【点睛】此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.25、(1)50、10、0.16;(2)144;(3).【解析】(1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,(2)用360乘以D
29、观点的频率即可得;(3)画出树状图,然后根据概率公式列式计算即可得解【详解】解:(1)参加本次讨论的学生共有120.24=50,则a=500.2=10,b=850=0.16,故答案为50、10、0.16;(2)D所在扇形的圆心角的度数为3600.4=144;(3)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率为【点睛】此题考查了列表法或树状图法求概率以及条形统计图用到的知识点为:概率=所求情况数与总情况数之比26、(1)200,(2)图见试题解析 (3)540【解析】试题分析:(1)根据A级的人
30、数与所占的百分比列式进行计算即可求出被调查的学生人数;(2)根据总人数求出C级的人数,然后补全条形统计图即可;(3)1减去A、B两级所占的百分比乘以360即可得出结论试题解析:(1)调查的学生人数为:=200名;(2)C级学生人数为:200-50-120=30名,补全统计图如图;(3)学习态度达标的人数为:3601-(25%+60%=54答:求出图中C级所占的圆心角的度数为54考点:条形统计图和扇形统计图的综合运用27、15千米【解析】首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间4,根据等量关系,列出方程,再解即可【详解】:解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:=4解得:x=15,经检验x=15是原方程的解且符合实际意义答:小张用骑公共自行车方式上班平均每小时行驶15千米