重庆市一中学2022-2023学年中考适应性考试数学试题含解析.doc

上传人:茅**** 文档编号:88310644 上传时间:2023-04-25 格式:DOC 页数:17 大小:907KB
返回 下载 相关 举报
重庆市一中学2022-2023学年中考适应性考试数学试题含解析.doc_第1页
第1页 / 共17页
重庆市一中学2022-2023学年中考适应性考试数学试题含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《重庆市一中学2022-2023学年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《重庆市一中学2022-2023学年中考适应性考试数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1点M(a,2a)在反比例函数y的图象上,那么a的值是( )A4B4C2D22如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将以DE为折痕向右折叠,AE与BC交于点F,则的面积为( )

2、A4B6C8D103关于的一元二次方程有两个不相等的实数根,则实数的取值范围是ABCD4下列说法不正确的是( )A某种彩票中奖的概率是,买1000张该种彩票一定会中奖B了解一批电视机的使用寿命适合用抽样调查C若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件5如图所示的图形,是下面哪个正方体的展开图()ABCD6如图,若a0,b0,c0,则抛物线y=ax2+bx+c的大致图象为()ABCD7如图,ABC中,DEBC,AE2cm,则AC的长是()A2cmB4cmC6cmD8cm8若关于的一元二次方程x(

3、x+1)+ax=0有两个相等的实数根,则实数a的值为( )AB1CD9如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A24 cm2B48 cm2C60 cm2D80 cm210如图,在ABC中,AED=B,DE=6,AB=10,AE=8,则BC的长度为( )ABC3D二、填空题(共7小题,每小题3分,满分21分)11若关于x的一元二次方程x2+mx+2n0有一个根是2,则m+n_12如图,在ABC中,AB=AC,tanACB=2,D在ABC内部,且AD=CD,ADC=90,连接BD,若BCD的面积为10,则AD的长为_13已知二次函数y=x2,当x0时,y随x的增大而_(填“增大”

4、或“减小”)14因式分解:x24= 15同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为 16若一个等腰三角形的周长为26,一边长为6,则它的腰长为_17如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是_三、解答题(共7小题,满分69分)18(10分)如图,在ABC中,ABC=90,BD为AC边上的中线(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CEBC于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形19(5分)先化简,再求值:,其中x满足x2x1=120(8分)矩形ABCD

5、一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA求证:OCPPDA;若OCP与PDA的面积比为1:4,求边AB的长(2)如图2,在(1)的条件下,擦去AO和OP,连接BP动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作MEBP于点E试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由21(10分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度如图2,某一

6、时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,ABBC,同一时刻,光线与水平面的夹角为72,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米)(参考数据:sin720.95,cos720.31,tan723.08)22(10分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解根据调查统计结果,绘制了如图所示的不完整的三种统计图表对冬奥会了解程度的

7、统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n= ;(2)扇形统计图中,D部分扇形所对应的圆心角是 ;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平23(12分)某校对学生就“食品安全知识”进行

8、了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。请根据图中信息,解答下列问题: (1)根据图中数据,求出扇形统计图中的值,并补全条形统计图。(2)该校共有学生900人,估计该校学生对“食品安全知识”非常了解的人数.24(14分)在ABC中,已知AB=AC,BAC=90,E为边AC上一点,连接BE(1)如图1,若ABE=15,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AFBE交BC于点F,过点F作FGCD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG参考答案一、选择题(每小题只有一个正确答案,每小题3分,

9、满分30分)1、D【解析】根据点M(a,2a)在反比例函数y的图象上,可得:,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y的图象上,可得:,解得:,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.2、C【解析】根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,CEF的面积=CFCE【详解】解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,因为BCDE,所以BF:DE=AB:AD,所以BF=2,CF=BC-BF=4,所以CEF的面积=CFCE=8;故选:C点睛:本题利

10、用了:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;矩形的性质,平行线的性质,三角形的面积公式等知识点3、A【解析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可【详解】关于x的一元二次方程x23x+m=0有两个不相等的实数根,=b24ac=(3)241m0,m,故选A【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式的关系,即:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根4、A【解析】试题分析:根据抽样调查适用的条件

11、、方差的定义及意义和可能性的大小找到正确答案即可试题解析:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确故选A考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件5、D【解析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:

12、B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.6、B【解析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】a0,抛物线的开口方向向下,故第三个选项错误;c0,抛物线与y

13、轴的交点为在y轴的负半轴上,故第一个选项错误;a0、b0,对称轴为x=0,对称轴在y轴右侧,故第四个选项错误故选B7、C【解析】由可得ADEABC,再根据相似三角形的性质即可求得结果.【详解】ADEABCAC=6cm故选C.考点:相似三角形的判定和性质点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.8、A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得=(a+1)2-410=0,解得:a1=a2=-1,故选A.【点睛】本题

14、考查一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根9、A【解析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积【详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为81=4cm,故侧面积=rl=64=14cm1故选:A【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查10、A【解析】AED=B,A=AADEACB,DE=6,AB

15、=10,AE=8,解得BC.故选A.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据一元二次方程的解的定义把x1代入x1mx1n0得到41m1n0得nm1,然后利用整体代入的方法进行计算【详解】1(n0)是关于x的一元二次方程x1mx1n0的一个根,41m1n0,nm1,故答案为1【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根12、5 【解析】作辅助线,构建全等三角形和高线DH,设CMa,根据等腰直角三角形的性质和三角函数表示A

16、C和AM的长,根据三角形面积表示DH的长,证明ADGCDH(AAS),可得DGDHMG作辅助线,构建全等三角形和高线DH,设CMa,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明ADGCDH(AAS),可得DGDHMG,AGCHa,根据AMAGMG,列方程可得结论,AGCHa,根据AMAGMG,列方程可得结论【详解】解:过D作DHBC于H,过A作AMBC于M,过D作DGAM于G,设CMa,ABAC,BC2CM2a,tanACB2,2,AM2a,由勾股定理得:ACa,SBDCBCDH10,2aDH10,DH,DHMHMGMGD90,四边形DHMG为矩形,H

17、DG90HDCCDG,DGHM,DHMG,ADC90ADGCDG,ADGCDH,在ADG和CDH中,ADGCDH(AAS),DGDHMG,AGCHa,AMAGMG,即2aa,a220,在RtADC中,AD2CD2AC2,ADCD,2AD25a2100,AD5或5(舍),故答案为5【点睛】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AGCH是解决问题的关键,并利用方程的思想解决问题13、增大【解析】根据二次函数的增减性可求得答案【详解】二次函数y=x2的对称轴是y轴,开口方向向上,当y随x的增大而增大.故答案为:增大.【点睛】本题考查的知识点是二

18、次函数的性质,解题的关键是熟练的掌握二次函数的性质.14、(x+2)(x-2).【解析】试题分析:直接利用平方差公式分解因式得出x24=(x+2)(x2)考点:因式分解-运用公式法15、【解析】试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(

19、6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)一共有36种等可能的结果,两个骰子的点数相同的有6种情况,两个骰子的点数相同的概率为:=故答案为考点:列表法与树状图法16、1【解析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解【详解】当6为腰长时,则腰长为6,底边=26-6-6=14,因为146+6,所以不能构成三角形;当6为底边时,则腰长=(26-6)2=1,因为6-616+6,所以能构成三角形;故腰长为1故答案为:1【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验17、2n+1【解析】观察

20、摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,从中得到规律,根据规律写出第n个图形的周长解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,所以第n个图形的周长为:2+n故答案为2+n此题考查的是图形数字的变化类问题,关键是通过观察分析得出规律,根据规律求解三、解答题(共7小题,满分69分)18、 (1)见解析;(2)见解析.【解析】(1)根据题意作图即可;(2)先根据BD为AC边上的中线,AD=DC,再证明ABDCED(AAS)得AB=EC,已知ABC=90即可得四边形ABCE是矩形【详解】(1

21、)解:如图所示:E点即为所求;(2)证明:CEBC,BCE=90,ABC=90,BCE+ABC=180,ABCE,ABE=CEB,BAC=ECA,BD为AC边上的中线,AD=DC,在ABD和CED中,ABDCED(AAS),AB=EC,四边形ABCE是平行四边形,ABC=90,平行四边形ABCE是矩形【点睛】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.19、2【解析】根据分式的运算法则进行计算化简,再将x2=x+2代入即可.【详解】解:原式=,x2x2=2,x2=x+2,=220、(1)证明见解析;10;(2)线段EF的长度不变,它的

22、长度为2. 【解析】试题分析:(1)先证出C=D=90,再根据1+3=90,1+2=90,得出2=3,即可证出OCPPDA;根据OCP与PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8x,由勾股定理得列方程,求出x,最后根据CD=AB=2OP即可求出边CD的长;(2)作MQAN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据MEPQ,得出EQ=PQ,根据QMF=BNF,证出MFQNFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB的长,最后代入EF=PB即可得出线段EF的长度不变试题解析:(1)如图1,四边形ABCD是矩形,C=D=90,1+3=

23、90,由折叠可得APO=B=90,1+2=90,2=3,又D=C,OCPPDA;OCP与PDA的面积比为1:4,=,CP=AD=4,设OP=x,则CO=8x,在RtPCO中,C=90,由勾股定理得 :,解得:x=5,CD=AB=AP=2OP=10,边CD的长为10;(2)作MQAN,交PB于点Q,如图2,AP=AB,MQAN,APB=ABP=MQP,MP=MQ,BN=PM,BN=QMMP=MQ,MEPQ,EQ=PQMQAN,QMF=BNF,在MFQ和NFB中,QFM=NFB,QMF=BNF,MQ=BN,MFQNFB(AAS),QF=QB,EF=EQ+QF=PQ+QB=PB,由(1)中的结论可得

24、:PC=4,BC=8,C=90,PB=,EF=PB=,在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为考点:翻折变换(折叠问题);矩形的性质;相似形综合题21、13.1【解析】试题分析:如图,作CMAB交AD于M,MNAB于N,根据=,可求得CM的长,在RTAMN中利用三角函数求得AN的长,再由MNBC,ABCM,判定四边形MNBC是平行四边形,即可得BN的长,最后根据AB=AN+BN即可求得AB的长试题解析:如图作CMAB交AD于M,MNAB于N由题意=,即=,CM=,在RTAMN中,ANM=90,MN=BC=4,AMN=72,tan72=,AN12.3,MNBC,A

25、BCM,四边形MNBC是平行四边形,BN=CM=,AB=AN+BN=13.1米考点:解直角三角形的应用.22、 (1)40;(2)144;(3)作图见解析;(4)游戏规则不公平【解析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题【详解】解:(1)n%=110%15%35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:36040%=144,故答案为144;(3)调查的结果为D等级的人数为:400

26、40%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数) P(偶数)故游戏规则不公平【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小23、(1),补全条形统计图见解析;(2)该校学生对“食品安全知识”非常了解的人数为135人。【解析】试题分析:(1)由统计图中的信息可知,B组学生有32人,占总数的40%,由此可得被抽查学生总人数为:3240%=80(人),结合C组学生有28人可得:m%=2880100%=35%,由此

27、可得m=35;由80-32-28-8=12(人)可知A组由12人,由此即可补全条形统计图了;(2)由(1)中计算可知,A组有12名学生,占总数的1280100%=15%,结合全校总人数为900可得90015%=135(人),即全校“非常了解”“食品安全知识”的有135人.试题解析:(1)由已知条件可得:被抽查学生总数为3240%=80(人),m%=2880100%=35%,m=35,A组人数为:80-32-28-8=12(人),将图形统计图补充完整如下图所示:(2)由题意可得:900(1280100%)=90015%=135(人).答:全校学生对“食品安全知识”非常了解的人数为135人.24、

28、(1) (2)证明见解析【解析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题(2)如图2中,作CQAC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题【详解】解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME在 RtABE 中,OB=OE,BE=2OA=2,MB=ME,MBE=MEB=15,AME=MBE+MEB=30,设 AE=x,则 ME=BM=2x,AM=x,AB2+AE2=BE2,x= (负根已经舍弃),A

29、B=AC=(2+ ) ,BC= AB= +1作 CQAC,交 AF 的延长线于 Q, AD=AE ,AB=AC ,BAE=CAD,ABEACD(SAS),ABE=ACD,BAC=90,FGCD,AEB=CMF,GEM=GME,EG=MG,ABE=CAQ,AB=AC,BAE=ACQ=90,ABECAQ(ASA),BE=AQ,AEB=Q,CMF=Q,MCF=QCF=45,CF=CF,CMFCQF(AAS),FM=FQ,BE=AQ=AF+FQ=AF=FM,EG=MG,BG=BE+EG=AF+FM+MG=AF+FG【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁