江苏省张家港市第一中学2022-2023学年中考数学适应性模拟试题含解析.doc

上传人:茅**** 文档编号:88304540 上传时间:2023-04-25 格式:DOC 页数:22 大小:1.02MB
返回 下载 相关 举报
江苏省张家港市第一中学2022-2023学年中考数学适应性模拟试题含解析.doc_第1页
第1页 / 共22页
江苏省张家港市第一中学2022-2023学年中考数学适应性模拟试题含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《江苏省张家港市第一中学2022-2023学年中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省张家港市第一中学2022-2023学年中考数学适应性模拟试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(共10小题,每小题3分,共30分)1将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )ABCD2将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )ABCD3如图所示是由几个完全相同的小正方体组成的几何体的三视图若小正方体的体积是1,则这个几何体的体积为()A2B3C4D54如图,在RtABC中,ACB=90,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则ACD的周长为()A13B17C18D255如图是一个由4个相同的正方体组成的立体图

3、形,它的主视图是()ABCD6下列计算结果正确的是()ABCD7在下列函数中,其图象与x轴没有交点的是()Ay=2xBy=3x+1Cy=x2Dy=8将一把直尺和一块含30和60角的三角板ABC按如图所示的位置放置,如果CDE=40,那么BAF的大小为()A10B15C20D259下列四个图案中,不是轴对称图案的是()ABCD10如图,RtABC中,C=90,A=35,点D在边BC上,BD=2CD把ABC绕着点D逆时针旋转m(0m180)度后,如果点B恰好落在初始RtABC的边上,那么m=()A35B60C70D70或120二、填空题(本大题共6个小题,每小题3分,共18分)11若关于x的方程x

4、28x+m0有两个相等的实数根,则m_12在矩形ABCD中,AB=4, BC=3, 点P在AB上若将DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为_13如图,在直角坐标系中,点A(2,0),点B (0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PCx轴,垂足为C,把ACP沿AP翻折,使点C落在点D处,若以A,D,P为顶点的三角形与ABP相似,则所有满足此条件的点P的坐标为_14菱形ABCD中,其周长为32,则菱形面积为_.15在ABC中,AB=AC,把ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N如果CAN是等腰三角形,则B的度数为_16分解因

5、式:a2-2ab+b2-1=_三、解答题(共8题,共72分)17(8分)如图,在平行四边形ABCD中,BD是对角线,ADB=90,E、F分别为边AB、CD的中点(1)求证:四边形DEBF是菱形;(2)若BE=4,DEB=120,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为 ,并在图上标出此时点P的位置18(8分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求OBC的面积.19(8分)如图,反比例函数y=(

6、x0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1(1)求k的值;(1)点B为此反比例函数图象上一点,其纵坐标为2过点B作CBOA,交x轴于点C,求点C的坐标20(8分)已知关于x的一元二次方程3x26x+1k=0有实数根,k为负整数求k的值;如果这个方程有两个整数根,求出它的根21(8分)如图,已知ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,EAB=DAC=90,连结BD,CE交于点F,设AB=m,BC=n.(1)求证:BDA=ECA(2)若m=,n=3,ABC=75,求BD的长.(3)当ABC=_时,BD最大,最大值为_(用含m,n的代数式

7、表示)(4)试探究线段BF,AE,EF三者之间的数量关系。22(10分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示(1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?23(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表请结合图表所给出的信息解答下列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图初三(一)班数学老师准备从成绩优秀的甲、乙、丙、

8、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率24如图,已知抛物线过点A(4,0),B(2,0),C(0,4)(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且PAB=CAC1,求点P的横坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:抛物线向右平移1个单位长度,平移后解析式为:,再向上平移1个单位长度所得的抛物线解析式为:故选C考点:二次函数图象与几何变换2、D【解析】根据“左加右减、上加下减”的

9、原则,将抛物线向左平移1个单位所得直线解析式为:;再向下平移3个单位为:故选D3、C【解析】根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.故选C.【点睛】错因分析容易题,失分原因:未掌握通过三视图还原几何体的方法.4、C【解析】在RtABC中,ACB=90,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分

10、线,在RtABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.5、D【解析】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.【详解】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,D是该几何体的主视图.故选D.【点睛】本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.6、C【解析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选

11、项【详解】A、原式,故错误;B、原式,故错误;C、利用合并同类项的知识可知该选项正确;D、,所以原式无意义,错误,故选C【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大7、D【解析】依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可【详解】A正比例函数y=2x与x轴交于(0,0),不合题意;B一次函数y=-3x+1与x轴交于(,0),不合题意;C二次函数y=x2与x轴交于(0,0),不合题意;D反比例函数y=与x轴没有交点,符合题意;故选D8、A【解析】先根据CDE=40,得出CED=50,再根据DEAF,即可得到C

12、AF=50,最后根据BAC=60,即可得出BAF的大小【详解】由图可得,CDE=40 ,C=90,CED=50,又DEAF,CAF=50,BAC=60,BAF=6050=10,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.9、B【解析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选:B【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答

13、本题的关键.10、D【解析】当点B落在AB边上时,根据DB=DB1,即可解决问题,当点B落在AC上时,在RTDCB2中,根据C=90,DB2=DB=2CD可以判定CB2D=30,由此即可解决问题【详解】当点B落在AB边上时,当点B落在AC上时,在中,C=90, ,故选D.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据判别式的意义得到(8)24m0,然后解关于m的方程即可【详解】(8)24m0,解得m1,故答案为:1【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c0(a0)的根与b24

14、ac有如下关系:当0时,方程有两个不相等的实数根;当0时,方程有两个相等的实数根;当0时,方程无实数根12、或【解析】点A落在矩形对角线BD上,如图1,AB=4,BC=3,BD=5,根据折叠的性质,AD=AD=3,AP=AP,A=PAD=90,BA=2,设AP=x,则BP=4x,BP2=BA2+PA2,(4x)2=x2+22,解得:x=,AP=;点A落在矩形对角线AC上,如图2,根据折叠的性质可知DPAC,DAPABC,AP=故答案为或13、【解析】点A(2,0),点B (0,1),OA=2,OB=1, .lAB,PACOAB=90.OBA+OAB=90,OBA=PAC.AOB=ACP,ABO

15、PAC, .设AC=m,PC=2m, .当点P在x轴的上方时,由 得, , , ,PC=1, , 由 得, , m2,AC=2,PC=4,OC2+2=4,P(4,4).当点P在x轴的下方时,由 得, , , ,PC=1, , 由 得, , m2,AC=2,PC=4,OC2-2=0,P(0,4).所以P点坐标为或(4,4)或或(0,4)【点睛】本题考察了相似三角形的判定,相似三角形的性质,平面直角坐标系点的坐标及分类讨论的思想.在利用相似三角形的性质列比例式时,要找好对应边,如果对应边不确定,要分类讨论.因点P在x轴上方和下方得到的结果也不一样,所以要分两种情况求解.请在此填写本题解析!14、【

16、解析】分析:根据菱形的性质易得AB=BC=CD=DA=8,ACBD, OA=OC,OB=OD,再判定ABD为等边三角形,根据等边三角形的性质可得AB=BD=8,从而得OB=4,在RtAOB中,根据勾股定理可得OA=4,继而求得AC=2AO=,再由菱形的面积公式即可求得菱形ABCD的面积.详解:菱形ABCD中,其周长为32,AB=BC=CD=DA=8,ACBD, OA=OC,OB=OD,ABD为等边三角形,AB=BD=8,OB=4,在RtAOB中,OB=4,AB=8,根据勾股定理可得OA=4,AC=2AO=,菱形ABCD的面积为:=.点睛:本题考查了菱形性质:1.菱形的四个边都相等;2.菱形对角

17、线相互垂直平分,并且每一组对角线平分一组对角;3.菱形面积公式=对角线乘积的一半.15、或【解析】MN是AB的中垂线,则ABN是等腰三角形,且NA=NB,即可得到B=BAN=C然后对ANC中的边进行讨论,然后在ABC中,利用三角形内角和定理即可求得B的度数解:把ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,MN是AB的中垂线NB=NAB=BAN,AB=ACB=C设B=x,则C=BAN=x1)当AN=NC时,CAN=C=x则在ABC中,根据三角形内角和定理可得:4x=180,解得:x=45则B=45;2)当AN=AC时,ANC=C=x,而ANC=B+BAN,故此时不成立;3)当C

18、A=CN时,NAC=ANC=在ABC中,根据三角形内角和定理得到:x+x+x+=180,解得:x=36故B的度数为 45或3616、 (ab1)(ab1)【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解【详解】a2-2ab+b2-1,=(a-b)2-1,=(a-b+1)(a-b-1)【点睛】本题考查用分组分解法进行因式分解难点是采用两两分组还是三一分组本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底三、解答题(共8题,共72分)17、(1)详见解析;(2).【解析】(1)根据直角三角形斜边上的

19、中线等于斜边的一半,以及平行四边形的对边相等证明四边形DEBF的四边相等即可证得;(2)连接EM,EM与BD的交点就是P,FF+PM的最小值就是EM的长,证明BEF是等边三角形,利用三角函数求解【详解】(1)平行四边形ABCD中,ADBC,DBC=ADB=90ABD中,ADB=90,E时AB的中点,DE=AB=AE=BE同理,BF=DF平行四边形ABCD中,AB=CD,DE=BE=BF=DF,四边形DEBF是菱形;(2)连接BF菱形DEBF中,DEB=120,EFB=60,BEF是等边三角形M是BF的中点,EMBF则EM=BEsin60=4=2即PF+PM的最小值是2故答案为:2【点睛】本题考

20、查了菱形的判定与性质以及图形的对称,根据菱形的对称性,理解PF+PM的最小值就是EM的长是关键18、(1)A(4,3);(2)28.【解析】(1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在RtOAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得OBC的面积.【详解】解:(1)由题意得: ,解得,点A的坐标为(4,3).(2)过点A作x轴的垂线,垂足为D, 在RtOAD中,由勾股定理得, .P(a,0),B(a,),C(a,-a+7),B

21、C=,解得a=8.19、(1)k=11;(1)C(2,0)【解析】试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=即可求出k的值;(1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可试题解析:(1)点A在直线y=2x上,其横坐标为1y=21=6,A(1,6), 把点A(1,6)代入,得,解得:k=11;(1)由(1)得:,点B为此反比例函数图象上一点,其纵坐标为2,解得x=4,B(4,2),CBOA,设直线BC的解析式为y=2x+b,把点B(4,2)代入y=

22、2x+b,得24+b=2,解得:b=9,直线BC的解析式为y=2x9,当y=0时,2x9=0,解得:x=2,C(2,0)20、(2)k=2,2(2)方程的根为x2=x2=2【解析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值【详解】解:(2)根据题意,得=(6)243(2k)0,解得 k2k为负整数,k=2,2(2)当k=2时,不符合题意,舍去; 当k=2时,符合题意,此时方程的根为x2=x2=2【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a0)

23、的根与=b2-4ac有如下关系:(2)0时,方程有两个不相等的实数根;(2)=0时,方程有两个相等的实数根;(3)0时,方程没有实数根也考查了一元二次方程的解法21、135 m+n 【解析】试题分析:(1)由已知条件证ABDAEC,即可得到BDA=CEA;(2)过点E作EGCB交CB的延长线于点G,由已知条件易得EBG=60,BE=2,这样在RtBEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合ABDAEC可得BD=EC=;(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,此时BD最大=EC最大=;(4)由ABDAEC可得

24、AEC=ABD,结合ABE是等腰直角三角形可得EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.试题解析:(1)ABE和ACD都是等腰直角三角形,且EAB=DAC=90,AE=AB,AC=AD,EAB+BAC=BAC+DAC,即EAC=BAD,EACBAD,BDA=ECA;(2)如下图,过点E作EGCB交CB的延长线于点G,EGB=90,在等腰直角ABE,BAE=90,AB=m= ,ABE=45,BE=2,ABC=75,EBG=180-75-45=60,BG=1,EG=,GC=BG+BC=4,CE=,EACBAD,BD=EC=;(3)由(2)可知,BE=,

25、BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,BD=EC,BD最大=EC最大=,此时ABC=180-ABE=180-45=135,即当ABC=135时,BD最大=;(4)ABDAEC,AEC=ABD,在等腰直角ABE中,AEC+CEB+ABE=90,ABD+ABE+CEB=90,BFE=180-90=90,EF2+BF2=BE2,又在等腰RtABE中,BE2=2AE2,2AE2=EF2+BF2.点睛:(1)解本题第2小题的关键是过点E作EGCB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在RtEGC中求得EC的长了,结合(1)中所证的全等三角形即可得

26、到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.22、(1)10,1;(2)【解析】(1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可【详解】解:(1)图象过点, ,解得的顶点坐标为,当时,最大=1答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元(2)函数图象的对称轴为直线,可知点关于对称轴的对称点是,又函数图象开口向下,当时,答:销售单价不少于8元且不超过12元

27、时,该种商品每天的销售利润不低于21元【点睛】本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质23、(1)300人(2)b=0.15,c=0.2;(3) 【解析】分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.详解:(1)由题意可得:该校初三学生共有:1050.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=3000.3=90(人),b=0.15,c

28、=0.2;如图所示:(3)画树形图得:一共有12种情况,抽取到甲和乙的有2种,P(抽到甲和乙)=点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.24、 (1)yx2x4(2)点M的坐标为(2,4)(3)或【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式;(2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM(m2)212. 当m2时,四边形OAMC面积最大,此时阴影部分面积最小; (3) 抛物线的对称轴为直线x1,点C与点C

29、1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.先求AC4,CDC1D,AD43;设点P ,过P作PQ垂直于x轴,垂足为Q. 证PAQC1AD,得,即,解得解得n,或n,或n4(舍去).【详解】(1)抛物线的解析式为y (x4)(x2)x2x4.(2)连接OM,设点M的坐标为. 由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM 4m 4 m24m8(m2)212.当m2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,4)(3)抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.OAOC,AOC90,CDC190,AC4,CDC1D,AD43,设点P ,过P作PQ垂直于x轴,垂足为Q.PABCAC1,AQPADC1,PAQC1AD,即 ,化简得 (82n),即3n26n2482n,或3n26n24(82n),解得n,或n,或n4(舍去),点P的横坐标为或.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁