《贵州省遵义市2023年十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《贵州省遵义市2023年十校联考最后数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1二次函数的对称轴是 A直线B直线Cy轴Dx轴2如图,在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:AED=CED;OE=OD;BH=HF;BCCF=2HE;AB=HF,其中正确的有( )A2个B3个C4个
2、D5个3下列调查中适宜采用抽样方式的是()A了解某班每个学生家庭用电数量 B调查你所在学校数学教师的年龄状况C调查神舟飞船各零件的质量 D调查一批显像管的使用寿命4如图,是直角三角形,点在反比例函数的图象上若点在反比例函数的图象上,则的值为( )A2B-2C4D-45已知方程x2x2=0的两个实数根为x1、x2,则代数式x1+x2+x1x2的值为()A3B1C3D16如图所示,结论:;,其中正确的是有( )A1个B2个C3个D4个7在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )ABCD8如图1,在ABC中,AB=BC,AC=m,D
3、,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是( )APDBPBCPEDPC9如图,ABCD,E为CD上一点,射线EF经过点A,EC=EA若CAE=30,则BAF=()A30 B40 C50 D6010如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A国B厉C害D了二、填空题(共7小题,每小题3分,满分21分)11如图,在平面直角坐标系中,正方形ABOC和正方形DOFE的顶点B,F在x轴上,顶点C,D在y轴上,且SADC=4,反比
4、例函数y=(x0)的图像经过点E, 则k=_ 。12亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_13分解因式:x2yy_14如图,边长为4的正方形ABCD内接于O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且EOF=90,连接GH,有下列结论:弧AE=弧BF;OGH是等腰直角三角形;四边形OGBH的面积随着点E位置的变化而变化;GBH周长的最小值为4+2其中正确的是_(把你认为正确结论的序号都填上)15如图,在平面直角坐标系中,经过点A的双曲线y=(x0)同时经过点B,且点A在点B的左侧,点A的
5、横坐标为1,AOB=OBA=45,则k的值为_16如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是_17方程=的解是_三、解答题(共7小题,满分69分)18(10分)如图1,反比例函数(x0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,BAC75,ADy轴,垂足为D(1)求k的值;(2)求tanDAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线lx轴,与AC相交于点N,连接CM,求CMN面积的最大值19(5分)如图,ABD是O的内接三角形,E是弦BD的中点,点
6、C是O外一点且DBCA,连接OE延长与圆相交于点F,与BC相交于点C求证:BC是O的切线;若O的半径为6,BC8,求弦BD的长20(8分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).21(10分)如图,ABC内接与O,AB是直径,O的切线PC
7、交BA的延长线于点P,OFBC交AC于AC点E,交PC于点F,连接AF判断AF与O的位置关系并说明理由;若O的半径为4,AF=3,求AC的长22(10分)观察下列各个等式的规律:第一个等式:=1,第二个等式: =2,第三个等式:=3请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的23(12分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45、木瓜B的仰角为30求C处到树干DO的距离CO(结果精确到1米)
8、(参考数据:,)24(14分)某校园图书馆添置新书,用240元购进一种科普书,同时用200元购进一种文学书,由于科普书的单价比文学书的价格高出一半,因此,学校所购文学书比科普书多4本,求:(1)这两种书的单价(2)若两种书籍共买56本,总费用不超过696元,则最多买科普书多少本?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案【详解】解:二次函数y=x2的对称轴为y轴故选:C 【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k)2
9、、C【解析】试题分析:在矩形ABCD中,AE平分BAD,BAE=DAE=45,ABE是等腰直角三角形,AE=AB,AD=AB,AE=AD,又ABE=AHD=90ABEAHD(AAS),BE=DH,AB=BE=AH=HD,ADE=AED=(18045)=67.5,CED=1804567.5=67.5,AED=CED,故正确;AHB=(18045)=67.5,OHE=AHB(对顶角相等),OHE=AED,OE=OH,OHD=9067.5=22.5,ODH=67.545=22.5,OHD=ODH,OH=OD,OE=OD=OH,故正确;EBH=9067.5=22.5,EBH=OHD,又BE=DH,AE
10、B=HDF=45BEHHDF(ASA),BH=HF,HE=DF,故正确;由上述、可得CD=BE、DF=EH=CE,CF=CD-DF,BC-CF=(CD+HE)-(CD-HE)=2HE,所以正确;AB=AH,BAE=45,ABH不是等边三角形,ABBH,即ABHF,故错误;综上所述,结论正确的是共4个故选C【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质3、D【解析】根据全面调查与抽样调查的特点对各选项进行判断【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采
11、用全面调查;而调查一批显像管的使用寿命要采用抽样调查故选:D【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度4、D【解析】要求函数的解析式只要求出点的坐标就可以,过点、作轴,轴,分别于、,根据条件得到,得到:,然后用待定系数法即可.【详解】过点、作轴,轴,分别于、,设点的坐标是,则,因为点在反比例函数的图象上,则,点在反比例函数的图象上,点的坐标是,.故选:.【点睛】本题考查了反比例函数图象上点的坐标特征,相
12、似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.5、D【解析】分析:根据一元二次方程根与系数的关系求出x1x2和x1x2的值,然后代入x1x2x1x2计算即可.详解:由题意得,a=1,b=-1,c=-2,x1x2x1x2=1+(-2)=-1.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .6、C【解析】根据已知的条件,可由AAS判定AEBAFC,进而可根据全等三角形得出的结论来判断各选项是否正确【详解】解:如图:在AEB
13、和AFC中,有,AEBAFC;(AAS)FAM=EAN,EAN-MAN=FAM-MAN,即EAM=FAN;(故正确)又E=F=90,AE=AF,EAMFAN;(ASA)EM=FN;(故正确)由AEBAFC知:B=C,AC=AB;又CAB=BAC,ACNABM;(故正确)由于条件不足,无法证得CD=DN;故正确的结论有:;故选C【点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难7、D【解析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可【详解】解:点M的坐标是(4,3),点M到x轴的距离是3,到y轴的距离是4,点M(4,3),以M为圆心,r为
14、半径的圆与x轴相交,与y轴相离,r的取值范围是3r4,故选:D【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键8、C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EPAC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力用图象解决问题时,要理清图象的含义即会识图9、D【解析】解:EC=EACAE=30,C
15、=30,AED=30+30=60ABCD,BAF=AED=60故选D点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键10、A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【详解】有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.二、填空题(共7小题,每小题3分,满分21分)11、8【解析】设正方形ABOC和正方形DOFE的边长分别是m、n,则AB=OB=m,DE=EF=OF=n,BF=OB+OF=m+n,然后根据SADF=S梯形ABOD+
16、SDOF-SABF=4,得到关于n的方程,解方程求得n的值,最后根据系数k的几何意义求得即可【详解】设正方形ABOC和正方形DOFE的边长分别是m、n,则AB=OB=m,DE=EF=OF=n,BF=OB+OF=m+n,=8,点E(n.n)在反比例函数y=kx(x0)的图象上,k=8,故答案为8.【点睛】本题考查了正方形的性质和反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12、4.41【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝
17、对值1时,n是正数;当原数的绝对值1时,n是负数详解:44000000=4.41,故答案为4.41点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值13、y(x+1)(x1)【解析】观察原式x2yy,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.【详解】解:x2yyy(x21)y(x+1)(x1)故答案为:y(x+1)(x1)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解
18、为止14、【解析】根据ASA可证BOECOF,根据全等三角形的性质得到BE=CF,根据等弦对等弧得到 ,可以判断;根据SAS可证BOGCOH,根据全等三角形的性质得到GOH=90,OG=OH,根据等腰直角三角形的判定得到OGH是等腰直角三角形,可以判断;通过证明HOMGON,可得四边形OGBH的面积始终等于正方形ONBM的面积,可以判断;根据BOGCOH可知BG=CH,则BG+BH=BC=4,设BG=x,则BH=4-x,根据勾股定理得到GH= ,可以求得其最小值,可以判断【详解】解:如图所示,BOE+BOF=90,COF+BOF=90,BOE=COF,在BOE与COF中, ,BOECOF,BE
19、=CF, ,正确;OC=OB,COH=BOG,OCH=OBG=45,BOGCOH;OG=OH,GOH=90,OGH是等腰直角三角形,正确如图所示,HOMGON,四边形OGBH的面积始终等于正方形ONBM的面积,错误;BOGCOH,BG=CH,BG+BH=BC=4,设BG=x,则BH=4-x,则GH=,其最小值为4+2,正确故答案为:【点睛】考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,等弦对等弧,等腰直角三角形的判定,勾股定理,面积的计算,综合性较强15、【解析】分析:过A作AMy轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,AMO=BNA=90,
20、由等腰三角形的判定与性质得出OA=BA,OAB=90,证出AOM=BAN,由AAS证明AOMBAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k1),得出方程(1+k)(k1)=k,解方程即可详解:如图所示,过A作AMy轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,AMO=BNA=90,AOM+OAM=90,AOB=OBA=45,OA=BA,OAB=90,OAM+BAN=90,AOM=BAN,AOMBAN,AM=BN=1,OM=AN=k,OD=1+k,BD=OMBN=k1B(1+k,k1),双曲线y=(x0)经过点B,(1+k)(k1)=k,整理得
21、:k2k1=0,解得:k=(负值已舍去),故答案为点睛:本题考查了反比例函数图象上点的坐标特征,坐标与图形的性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识.解决问题的关键是作辅助线构造全等三角形.【详解】请在此输入详解!16、2n+1【解析】观察摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,从中得到规律,根据规律写出第n个图形的周长解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,所以第n个图形的周长为:2+n故答案为2+n此题考查的是图形数字的变化类问题,关键是通过观察分析得出规律
22、,根据规律求解17、x=1【解析】观察可得方程最简公分母为x(x1),去分母,转化为整式方程求解,结果要检验【详解】方程两边同乘x(x1)得:3x1(x1),整理、解得x1检验:把x1代入x(x1)2x1是原方程的解,故答案为x1【点睛】解分式方程的基本思想是把分式方程转化为整式方程,具体方法是方程两边同时乘以最简公分母,在此过程中有可能会产生增根,增根是转化后整式的根,不是原方程的根,因此要注意检验三、解答题(共7小题,满分69分)18、(1);(2),;(3)【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BHAD于H,如图1,根据反比例函数图象上点的坐标特征确
23、定B点坐标为(1,2),则AH=21,BH=21,可判断ABH为等腰直角三角形,所以BAH=45,得到DAC=BACBAH=30,根据特殊角的三角函数值得tanDAC=;由于ADy轴,则OD=1,AD=2,然后在RtOAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,1),于是可根据待定系数法求出直线AC的解析式为y=x1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0t2),由于直线lx轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t1),则MN=t+1,根据三角形面积公式得到SCMN=t(t+1),再进行配方得到S=(
24、t)2+(0t2),最后根据二次函数的最值问题求解试题解析:(1)把A(2,1)代入y=,得k=21=2;(2)作BHAD于H,如图1,把B(1,a)代入反比例函数解析式y=,得a=2,B点坐标为(1,2),AH=21,BH=21,ABH为等腰直角三角形,BAH=45,BAC=75,DAC=BACBAH=30,tanDAC=tan30=;ADy轴,OD=1,AD=2,tanDAC=,CD=2,OC=1,C点坐标为(0,1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,1)代入得 ,解得 ,直线AC的解析式为y=x1;(3)设M点坐标为(t,)(0t2),直线lx轴,与AC相交于点
25、N,N点的横坐标为t,N点坐标为(t, t1),MN=(t1)=t+1,SCMN=t(t+1)=t2+t+=(t)2+(0t2),a=0,当t=时,S有最大值,最大值为19、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OEBD, ,再由圆周角定理可得 ,从而得到 OBE DBC90,即 ,命题得证.(2)由勾股定理求出OC,再由OBC的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB. E是弦BD的中点, BEDE,OE BD, BOE A, OBE BOE90. DBC A, BOE DBC, OBE DBC90
26、, OBC90,即BCOB, BC是 O的切线(2)解: OB6,BC8,BCOB, , , ,.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.20、(1).(2)公平.【解析】试题分析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:ABCDA(A,B)(A,C)
27、(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,P(两张都是轴对称图形)=,因此这个游戏公平考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.21、解:(1)AF与圆O的相切理由为:如图,连接OC,PC为圆O切线,CPOCOCP=90OFBC,AOF=B,COF=OCBOC=OB,OCB=BAOF=COF在AOF和COF中,OA=OC,AOF=COF,OF=OF,AOFCOF(SAS)OAF=OCF=90AF为圆O的切线,即AF与O的位置
28、关系是相切(2)AOFCOF,AOF=COFOA=OC,E为AC中点,即AE=CE=AC,OEACOAAF,在RtAOF中,OA=4,AF=3,根据勾股定理得:OF=1SAOF=OAAF=OFAE,AE=AC=2AE=【解析】试题分析:(1)连接OC,先证出3=2,由SAS证明OAFOCF,得对应角相等OAF=OCF,再根据切线的性质得出OCF=90,证出OAF=90,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE试题解析:(1)连接OC,如图所示:AB是O直径,BCA=90,OFBC,AEO=90,1=2,B=3,OFAC,OC=OA,B=1
29、,3=2,在OAF和OCF中,OAFOCF(SAS),OAF=OCF,PC是O的切线,OCF=90,OAF=90,FAOA,AF是O的切线;(2)O的半径为4,AF=3,OAF=90,OF=1FAOA,OFAC,AC=2AE,OAF的面积=AFOA=OFAE,34=1AE,解得:AE=,AC=2AE=考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质22、(1)=4;(2)=n【解析】试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:=4;(2
30、)第n个等式是:=n证明如下:= = =n第n个等式是:=n点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子23、解:设OC=x,在RtAOC中,ACO=45,OA=OC=x在RtBOC中,BCO=30,AB=OAOB=,解得OC=5米答:C处到树干DO的距离CO为5米【解析】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值【分析】设OC=x,在RtAOC中,由于ACO=45,故OA=x,在RtBOC中,由于BCO=30,故,再根据AB=OAOB=2即可得出结论24、(1)文学书的单价为10元,则科普书的单价为15元;(2)27本【解析】(1)根据等量关系:文学书数量科普书数量4本可以列出方程,解方程即可(2)根据题意列出不等式解答即可【详解】(1)设文学书的单价为x元,则科普书的单价为1.5x元,根据题意得:=4, 解得:x10,经检验:x10是原方程的解,1.5x15,答:文学书的单价为10元,则科普书的单价为15元(2)设最多买科普书m本,可得:15m+10(56m)696,解得:m27.2,最多买科普书27本【点睛】此题考查分式方程的实际应用,不等式的实际应用,正确理解题意列出方程或是不等式是解题的关键.