《2022-2023学年贵州省铜仁伟才校十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年贵州省铜仁伟才校十校联考最后数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列运算,结果正确的是()Am2+m2=m4B2m2nmn=4mC(3mn2)2=6m2n4D(m+
2、2)2=m2+42下列运算正确的是()A5a+2b=5(a+b)Ba+a2=a3C2a33a2=6a5D(a3)2=a53一个多边形内角和是外角和的2倍,它是( )A五边形B六边形C七边形D八边形4小带和小路两个人开车从A城出发匀速行驶至B城在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示有下列结论;A,B两城相距300 km;小路的车比小带的车晚出发1 h,却早到1 h;小路的车出发后2.5 h追上小带的车;当小带和小路的车相距50 km时,t或t.其中正确的结论有()ABCD5下列说法中,正确的是()A长度相等的弧是等弧B平分弦的直径垂直
3、于弦,并且平分弦所对的两条弧C经过半径并且垂直于这条半径的直线是圆的切线D在同圆或等圆中90的圆周角所对的弦是这个圆的直径6姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小根据他们的描述,姜老师给出的这个函数表达式可能是()ABCD7数据4,8,4,6,3的众数和平均数分别是( )A5,4B8,5C6,5D4,58在RtABC中,C90,那么sinB等于()ABCD9如图,在矩形ABCD中,E是AD边的中点,BEAC,垂足为点F,连接DF,分析下列四个结论:AEFCAB;C
4、F=2AF;DF=DC;tanCAD=其中正确的结论有()A4个B3个C2个D1个10已知二次函数y=3(x1)2+k的图象上有三点A(,y1),B(2,y2),C(,y3),则y1、y2、y3的大小关系为()Ay1y2y3By2y1y3Cy3y1y2Dy3y2y111等腰三角形的一个外角是100,则它的顶角的度数为()A80B80或50C20D80或2012已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PEAB于点E,作PFBC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()ABCD二、填空题:(本大题
5、共6个小题,每小题4分,共24分)13计算:()1(5)0_14计算:_.15分解因式:2a44a2+2_16一个n边形的每个内角都为144,则边数n为_17如果关于x的方程x2+2axb2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_18如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,量得,点在量角器上的读数为,则该直尺的宽度为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C
6、、D两村到E点的距离相等,已知DAAB于A,CBAB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?20(6分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?21(6分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测
7、旗杆顶部A的仰角为50,观测旗杆底部B的仰角为45,求旗杆AB的高度(参考数据:sin500.77,cos500.64,tan501.19)22(8分)如图1,在等腰RtABC中,BAC=90,点E在AC上(且不与点A、C重合),在ABC的外部作等腰RtCED,使CED=90,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF(1)求证:AEF是等腰直角三角形;(2)如图2,将CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且CED在ABC的下方时,若AB=2,CE=2,求线段AE的长
8、23(8分)先化简,再求值:,其中x524(10分)如图1,在长方形ABCD中,点P从A出发,沿的路线运动,到D停止;点Q从D点出发,沿路线运动,到A点停止若P、Q两点同时出发,速度分别为每秒、,a秒时P、Q两点同时改变速度,分别变为每秒、(P、Q两点速度改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象(1)求出a值;(2)设点P已行的路程为,点Q还剩的路程为,请分别求出改变速度后,和运动时间(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?25(10分)如图所示,PB是O的切线,B为切点,圆心O在PC上,P=30,D为弧BC的中点.(1)求
9、证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.26(12分)如图,正方形ABCD中,BD为对角线(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若AB=4,求DEF的周长27(12分)襄阳市精准扶贫工作已进入攻坚阶段贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克第x天的售价为y元/千克,y关于x的函数解析式为 且第12天的售价为32元/千克,第26天的售价为25元/千克已知
10、种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入成本)m= ,n= ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案【详解】A. m2+m2=2m2,故此选项错误;B. 2m2nmn=4m,正确;C. (3mn2)2=9m2n4,故此选项错误;D. (m+2)2=m2+4m+4,故此选项错误.故答案选:B.【点睛
11、】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.2、C【解析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a33a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误故选C【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键3、B【解析】多边形的外角和是310,则内角和是2310720设这个多边形是n边形,内角和是(n2)18
12、0,这样就得到一个关于n的方程,从而求出边数n的值【详解】设这个多边形是n边形,根据题意得:(n2)1802310解得:n1故选B【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决4、C【解析】观察图象可判断,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断,再令两函数解析式的差为50,可求得t,可判断,可得出答案【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比
13、小带早到1 h,都正确;设小带车离开A城的距离y与t的关系式为y小带kt,把(5,300)代入可求得k60,y小带60t,设小路车离开A城的距离y与t的关系式为y小路mtn,把(1,0)和(4,300)代入可得解得y小路100t100,令y小带y小路,可得60t100t100,解得t2.5,即小带和小路两直线的交点横坐标为t2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,不正确;令|y小带y小路|50,可得|60t100t100|50,即|10040t|50,当10040t50时,可解得t,当10040t50时,可解得t,又当t时,y小带50,此时小路还没出发,当t时,
14、小路到达B城,y小带250.综上可知当t的值为或或或时,两车相距50 km,不正确故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间5、D【解析】根据切线的判定,圆的知识,可得答案【详解】解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;D、在同圆或等圆中90的圆周角所对的弦是这个圆的直径,故D正确;故选:D【点睛】本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键6、B【解析】y=3
15、x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=的图象在二、四象限,故选项C错误;y=x的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.7、D【解析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可【详解】4出现了2次,出现的次数最多,众数是4;这组数据的平均数是:(4+8+4+6+3)5=5;故选D8、A【解析】根据锐角三角函数的定义得出sinB等于B的对边除以斜边,即可得出答案【详解】根据在ABC中,C=90,那么sinB= =,故答案选A.【点睛】
16、本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.9、A【解析】正确只要证明EAC=ACB,ABC=AFE=90即可;正确由ADBC,推出AEFCBF,推出=,由AE=AD=BC,推出=,即CF=2AF;正确只要证明DM垂直平分CF,即可证明;正确设AE=a,AB=b,则AD=2a,由BAEADC,有 =,即b=a,可得tanCAD=【详解】如图,过D作DMBE交AC于N四边形ABCD是矩形,ADBC,ABC=90,AD=BC,EAC=ACBBEAC于点F,ABC=AFE=90,AEFCAB,故正确;ADBC,AEFCBF,=AE=AD=BC,=,CF=2AF,故
17、正确;DEBM,BEDM,四边形BMDE是平行四边形,BM=DE=BC,BM=CM,CN=NFBEAC于点F,DMBE,DNCF,DM垂直平分CF,DF=DC,故正确;设AE=a,AB=b,则AD=2a,由BAEADC,有 =,即b=a,tanCAD=故正确故选A【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键解题时注意:相似三角形的对应边成比例10、D【解析】试题分析:根据二次函数的解析式y3(x1)2k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3y2y1.
18、故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.11、D【解析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答【详解】等腰三角形的一个外角是100,与这个外角相邻的内角为180100=80,当80为底角时,顶角为180-160=20,该等腰三角形的顶角是80或20.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.12、A【解析】由题意可得:APE和PCF都是等腰直角三角形AE=PE,PF=CF,那么矩形PE
19、BF的周长等于2个正方形的边长则y=2x,为正比例函数故选A二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】分别根据负整数指数幂,0指数幂的化简计算出各数,即可解题【详解】解:原式211,故答案为1【点睛】此题考查负整数指数幂,0指数幂的化简,难度不大14、【解析】根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可【详解】解:原式=【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍15、1(a+1)1(a
20、1)1【解析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式1(a41a1+1)1(a11)11(a+1)1(a1)1,故答案为:1(a+1)1(a1)1【点睛】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式16、10【解析】解:因为正多边形的每个内角都相等,每个外角都相等,根据相邻两个内角和外角关系互补,可以求出这个多边形的每个外角等于36,因为多边形的外角和是360,所以这个多边形的边数等于36036=10,故答案为:1017、1【解析】根据根的判
21、别式求出=0,求出a1+b1=1,根据完全平方公式求出即可【详解】解:关于x的方程x1+1ax-b1+1=0有两个相等的实数根,=(1a)1-41(-b1+1)=0,即a1+b1=1,常数a与b互为倒数,ab=1,(a+b)1=a1+b1+1ab=1+31=4,a+b=1,故答案为1【点睛】本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键18、【解析】连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有: 解直角即可.【详解】连接OC,OD,OC与AD交于点E, 直尺的宽度: 故答案为【点睛】考查垂径定理,熟记垂径定理是解题的关键.三、解答题:(
22、本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、20千米【解析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10x,将DA=8,CB=2代入关系式即可求得【详解】解:设基地E应建在离A站x千米的地方则BE=(50x)千米在RtADE中,根据勾股定理得:AD2+AE2=DE2302+x2=DE2在RtCBE中,根据勾股定理得:CB2+BE2=CE2202+(50x)2=CE2又C、D两村到E点的距离相等DE=CEDE2=CE2302+x2=202
23、+(50x)2解得x=20基地E应建在离A站20千米的地方考点:勾股定理的应用20、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析【解析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论【详解】(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+33x=550,x=50,经检验,符合题意,3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100y)个,根据题意得
24、,意, y为正整数,y为50,51,52,共3中方案;有三种方案:温馨提示牌50个,垃圾箱50个,温馨提示牌51个,垃圾箱49个,温馨提示牌52个,垃圾箱48个,设总费用为w元W=50y+150(100y)=100y+15000,k=-100,w随y的增大而减小当y=52时,所需资金最少,最少是9800元【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键21、7.6 m【解析】利用CD及正切函数的定义求得BC,AC长,把这两条线段相减即为AB长【详解】解:由题意,BDC45,ADC50,ACD90,CD40 m在RtBDC中,tanBDCBCCD40 m
25、在RtADC中,tanADCAB7.6(m)答:旗杆AB的高度约为7.6 m【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键22、(1)证明见解析;(2)证明见解析;(3)4. 【解析】试题分析:(1)依据AE=EF,DEC=AEF=90,即可证明AEF是等腰直角三角形;(2)连接EF,DF交BC于K,先证明EKFEDA,再证明AEF是等腰直角三角形即可得出结论;(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,RtACH中,AH=3,即可得到AE=AH+EH=4试题解析:解:(1)如图1四边形ABFD是平行四边形,AB=DFAB=AC,A
26、C=DFDE=EC,AE=EFDEC=AEF=90,AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K四边形ABFD是平行四边形,ABDF,DKE=ABC=45,EKF=180DKE=135,EK=EDADE=180EDC=18045=135,EKF=ADEDKC=C,DK=DCDF=AB=AC,KF=AD在EKF和EDA中,EKFEDA(SAS),EF=EA,KEF=AED,FEA=BED=90,AEF是等腰直角三角形,AF=AE(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,EH=DH=C
27、H=,RtACH中,AH=3,AE=AH+EH=4点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点23、,-【解析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.详解: 当时,原式.点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.24、(1)6;(2);(3)10或;【解析】(1)根据图象变化确定a秒时,P点位置,利用面积求a;(2)P、Q两点的函数关
28、系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程【详解】(1)由图象可知,当点P在BC上运动时,APD的面积保持不变,则a秒时,点P在AB上,AP=6,则a=6;(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x6)=2x6,Q点路程总长为34cm,第6秒时已经走12cm,故点Q还剩的路程为y2=3412;(3)当P、Q两点相遇前相距3cm时,(2x6)=3,解得x=10,当P、Q两点相遇后相距3cm时,(2x6)()=3,解得x=,当x=10或时,P、Q两点相距3cm【点睛】
29、本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式25、(1)见解析;(2)菱形【解析】试题分析:(1)由切线的性质得到OBP=90,进而得到BOP=60,由OC=BO,得到OBC=OCB=30,由等角对等边即可得到结论;(2)由对角线互相垂直平分的四边形是菱形证明即可试题解析:证明:(1)PB是O的切线,OBP=90,POB=90-30=60OB=OC,OBC=OCBPOB=OBC+OCB,OCB=30=P,PB=BC;(2)连接OD交BC于点MD是弧BC的中点,OD垂直平分BC在直角OMC中,OCM=30,OC=
30、2OM=OD,OM=DM,四边形BOCD是菱形26、(1)见解析;(2)2+1【解析】分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF的长度,从而得出答案详解:(1)如图,EF为所作;(2)解:四边形ABCD是正方形,BDC=15,CD=BC=1,又EF垂直平分CD,DEF=90,EDF=EFD=15, DE=EF=CD=2,DF=DE=2,DEF的周长=DF+DE+EF=2+1点睛:本题主要考查的是中垂线的性质,属于基础题型理解中垂线的性质是解题的关键27、(1)m=,n=25;(2)18,W最大=968;(3)12天.【解析】【分析】(
31、1)根据题意将第12天的售价、第26天的售价代入即可得;(2)在(1)的基础上分段表示利润,讨论最值;(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数【详解】(1)当第12天的售价为32元/件,代入y=mx76m得32=12m76m,解得m=,当第26天的售价为25元/千克时,代入y=n,则n=25,故答案为m=,n=25;(2)由(1)第x天的销售量为20+4(x1)=4x+16,当1x20时,W=(4x+16)(x+3818)=2x2+72x+320=2(x18)2+968,当x=18时,W最大=968,当20x30时,W=(4x+16)(2518)=28x+112,280,W随x的增大而增大,当x=30时,W最大=952,968952,当x=18时,W最大=968;(3)当1x20时,令2x2+72x+320=870,解得x1=25,x2=11,抛物线W=2x2+72x+320的开口向下,11x25时,W870,11x20,x为正整数,有9天利润不低于870元,当20x30时,令28x+112870,解得x27,27x30x为正整数,有3天利润不低于870元,综上所述,当天利润不低于870元的天数共有12天【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.