《辽宁省昌图县2023届中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省昌图县2023届中考一模数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABC是O的内接三角形,BOC120,则A等于()A50B60C55D652如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿ABC的方向运动,到达点C时停止设点M运动的路程为x,
2、MN2=y,则y关于x的函数图象大致为A B C D3在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A1颗B2颗C3颗D4颗4如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使APD=60,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()ABCD5将抛物线yx2x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()Ayx2+3x+6Byx2+3xCyx25x+10Dyx25
3、x+46如图,点O为平面直角坐标系的原点,点A在x轴上,OAB是边长为4的等边三角形,以O为旋转中心,将OAB按顺时针方向旋转60,得到OAB,那么点A的坐标为()A(2,2)B(2,4)C(2,2)D(2,2)7去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%设降价后房价为x,则去年二月份之前房价为()A(1+40%)30%xB(1+40%)(130%)xCD8下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )ABCD9已知,则的值是A60B64C66D7210如图,直线y=3x+6与x,y轴分别交于点A,B,以
4、OB为底边在y轴右侧作等腰OBC,将点C向左平移5个单位,使其对应点C恰好落在直线AB上,则点C的坐标为()A(3,3)B(4,3)C(1,3)D(3,4)二、填空题(共7小题,每小题3分,满分21分)11的算术平方根是_.12若二次根式有意义,则x的取值范围为_13已知反比例函数的图像经过点,那么的值是_14若式子有意义,则实数x的取值范围是_.15如图,直线ykx与双曲线y(x0)交于点A(1,a),则k_16如图所示,在等腰ABC中,AB=AC,A=36,将ABC中的A沿DE向下翻折,使点A落在点C处若AE=,则BC的长是_17如图,已知等边ABC的边长为6,在AC,BC边上各取一点E,
5、F,使AE=CF,连接AF、BE相交于点P,当点E从点A运动到点C时,点P经过点的路径长为_三、解答题(共7小题,满分69分)18(10分)2018年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元.19(5分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角FHE=60,求篮框D到地面的距离(精确到0.01米).
6、(参考数据:cos750.2588, sin750.9659,tan753.732,) 20(8分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF. (1)求证:四边形AECF为菱形;(2)若AB4,BC8,求菱形AECF的周长.21(10分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tan的值测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37,塔底B的仰角为26.6已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,
7、求山坡的坡度(参考数据sin26.60.45,tan26.60.50;sin370.60,tan370.75)22(10分)如图,在中,点在上运动,点在上,始终保持与相等,的垂直平分线交于点,交于,判断与的位置关系,并说明理由;若,求线段的长.23(12分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.24(14分)如图,ABC是等腰三角形,ABAC,点D是AB上一点,过点D作DEBC交BC于点E,交CA延长线于点F证明:ADF是等腰三角形;若B60,BD4,AD2,求EC的长,参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】由圆周角定理即可解答.【详
8、解】ABC是O的内接三角形,A BOC,而BOC120,A60.故选B【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.2、B【解析】分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:等边三角形ABC的边长为3,N为AC的三等分点,AN=1。当点M位于点A处时,x=0,y=1。当动点M从A点出发到AM=的过程中,y随x的增大而减小,故排除D;当动点M到达C点时,x=6,y=31=2,即此时y的值与点M在点A处时的值不相等,故排除A、C。故选B。3、B【解析】试题解析:由题意得,解得:故选B4、C【解析】根据等边三角形的性质可得出B=C=60,由等
9、角的补角相等可得出BAP=CPD,进而即可证出ABPPCD,根据相似三角形的性质即可得出y=- x2+x,对照四个选项即可得出【详解】ABC为等边三角形,B=C=60,BC=AB=a,PC=a-xAPD=60,B=60,BAP+APB=120,APB+CPD=120,BAP=CPD,ABPPCD,,即,y=- x2+x.故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键5、A【解析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】 ,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A【点睛】本题考查二次函数的平移
10、;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;6、D【解析】分析:作BCx轴于C,如图,根据等边三角形的性质得则易得A点坐标和O点坐标,再利用勾股定理计算出然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得则点A与点B重合,于是可得点A的坐标详解:作BCx轴于C,如图,OAB是边长为4的等边三角形 A点坐标为(4,0),O点坐标为(0,0),在RtBOC中, B点坐标为 OAB按顺时针方向旋转,得到OAB, 点A与点B重合,即点A的坐标为 故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.7、D【解析】根据题意可以用相应的
11、代数式表示出去年二月份之前房价,本题得以解决【详解】由题意可得,去年二月份之前房价为:x(130%)(1+40%)=,故选:D【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式8、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】A不是轴对称图形,也不是中心对称图形故错误;B不是轴对称图形,也不是中心对称图形故错误;C是轴对称图形,也是中心对称图形故正确;D不是轴对称图形,是中心对称图形故错误故选C【点睛】掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180后与原图重合9、A【解析】将代入原
12、式,计算可得【详解】解:当时,原式,故选A【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式10、B【解析】令x=0,y=6,B(0,6),等腰OBC,点C在线段OB的垂直平分线上,设C(a,3),则C (a5,3),3=3(a5)+6,解得a=4,C(4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.二、填空题(共7小题,每小题3分,满分21分)11、3【解析】根据算术平方根定义,先化简,再求的算术平方根.【详解】因为=9所以的算术平方根是3故答案为3【点睛】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错要熟悉特殊数
13、字0,1,-1的特殊性质12、x【解析】考点:二次根式有意义的条件根据二次根式的意义,被开方数是非负数求解解:根据题意得:1+2x0,解得x-故答案为x-13、【解析】将点的坐标代入,可以得到-1=,然后解方程,便可以得到k的值【详解】反比例函数y的图象经过点(2,-1),-1=k ;故答案为k【点睛】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答14、x2且x1【解析】根据被开方数大于等于1,分母不等于1列式计算即可得解【详解】解:由题意得,且x1,解得且x1故答案为且x1【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数15、1【解析】解:直线y
14、=kx与双曲线y=(x0)交于点A(1,a),a=1,k=1故答案为116、 【解析】【分析】由折叠的性质可知AE=CE,再证明BCE是等腰三角形即可得到BC=CE,问题得解【详解】AB=AC,A=36,B=ACB=72,将ABC中的A沿DE向下翻折,使点A落在点C处,AE=CE,A=ECA=36,CEB=72,BC=CE=AE=,故答案为【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明BCE是等腰三角形是解题的关键17、【解析】由等边三角形的性质证明AEBCFA可以得出APB=120,点P的路径是一段弧,由弧线长公式就可以得出结论【详解】:ABC为等边三角
15、形,AB=AC,C=CAB=60,又AE=CF,在ABE和CAF中, ,ABECAF(SAS),ABE=CAF又APE=BPF=ABP+BAP,APE=BAP+CAF=60APB=180-APE=120当AE=CF时,点P的路径是一段弧,且AOB=120,又AB=6,OA=2,点P的路径是l=,故答案为【点睛】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,弧线长公式的运用,解题的关键是证明三角形全等三、解答题(共7小题,满分69分)18、15元【解析】首先设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x5)元,根据题意列出一元一次方程进行求解.【详解】解:设每棵柏树苗的进
16、价是x元,则每棵枣树苗的进价是(2x5)元. 根据题意,列方程得:, 解得:x=15答:每棵柏树苗的进价是15元.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解19、3.05米.【解析】延长FE交CB的延长线于M,过A作AGFM于G,解直角三角形即可得到结论【详解】延长FE交CB的延长线于M,过A作AGFM于G,在RtABC中,tanACB=,AB=BCtan75=0.603.732=2.2392,GM=AB=2.2392,在RtAGF中,FAG=FHD=60,sinFAG=,sin60=,FG=2.165,DM=FG+
17、GMDF3.05米答:篮框D到地面的距离是3.05米考点:解直角三角形的应用20、(1)见解析;(2)1【解析】(1)根据ASA推出:AEOCFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EFAC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8x在RtABF中,由勾股定理求出x的值,即可得到结论【详解】(1)EF是AC的垂直平分线,AO=OC,AOE=COF=90四边形ABCD是矩形,ADBC,EAO=FCO在AEO和CFO中,AEOCFO(ASA);OE=OF又OA=OC,四边形AECF是平行四边形又EFAC,平行四边形
18、AECF是菱形;(2)设AF=xEF是AC的垂直平分线,AF=CF=x,BF=8x在RtABF中,由勾股定理得:AB2+BF2=AF2,42+(8x)2=x2,解得:x=5,AF=5,菱形AECF的周长为1【点睛】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想21、【解析】过点P作PDOC于D,PEOA于E,则四边形ODPE为矩形,先解RtPBD,得出BD=PDtan26.6;解RtCBD,得出CD=PDtan37;再根据CDBD=BC,列出方程,求出PD=2,进而求出PE=4,AE=5,然后在APE中利用三角函
19、数的定义即可求解【详解】解:如图,过点P作PDOC于D,PEOA于E,则四边形ODPE为矩形在RtPBD中,BDP=90,BPD=26.6,BD=PDtanBPD=PDtan26.6在RtCBD中,CDP=90,CPD=37,CD=PDtanCPD=PDtan37CDBD=BC,PDtan37PDtan26.6=10.75PD0.50PD=1,解得PD=2BD=PDtan26.620.50=3OB=220,PE=OD=OBBD=4OE=PD=2,AE=OEOA=2200=522、(1)理由见解析;(2)【解析】(1)根据得到A=PDA,根据线段垂直平分线的性质得到,利用,得到,于是得到结论;(
20、2)连接PE,设DE=x,则EB=ED=x,CE=8-x,根据勾股定理即可得到结论【详解】(1)理由如下,垂直平分,即.(2)连接,设,由(1)得,又,解得,即【点睛】本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键23、1【解析】解:取时,原式24、(1)见解析;(2)EC1【解析】(1)由ABAC,可知BC,再由DEBC,可知F+C90,BDE+B90,然后余角的性质可推出FBDE,再根据对顶角相等进行等量代换即可推出FFDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论【详解】(1)ABAC,BC,FEBC,F+C90,BDE+B90,FBDE,而BDEFDA,FFDA,AFAD,ADF是等腰三角形;(2)DEBC,DEB90,B60,BD1,BEBD2,ABAC,ABC是等边三角形,BCABAD+BD6,ECBCBE1【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出FFDA,即可推出结论