《辽宁省抚顺市名校2023届中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省抚顺市名校2023届中考五模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1下列图形中为正方体的平面展开图的是()ABCD2估算的值在()A3和4之间B4和5之间C5和6之间D6和7之间3若实数m满足,则下列对m值的估计正确的是()A2m1B1m0C0m1D1m24如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),ABO30,将ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A(,)B(2,)C(,)D(,3)5函数的图象上有两点,若,则( )ABCD、的大小不确定6已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象
3、是( )ABCD7下列算式中,结果等于x6的是()Ax2x2x2 Bx2+x2+x2 Cx2x3 Dx4+x28已知xa=2,xb=3,则x3a2b等于()AB1C17D729下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()Ay=(x2)2+1 By=(x+2)2+1Cy=(x2)23 Dy=(x+2)2310如图,将ABC绕点C顺时针旋转90得到EDC若点A,D,E在同一条直线上,ACB=20,则ADC的度数是A55B60C65D70二、填空题(本大题共6个小题,每小题3分,共18分)11如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和
4、y厘米,则列出的方程组为_12如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于_13因式分解:16a34a=_14某物流仓储公司用如图A,B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20kg,A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,设B型机器人每小时搬运x kg物品,列出关于x的方程为_15如图,AB是O的直径,弦CDAB,垂足为E,如果AB=26,CD=24,那么sinOCE= 16如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_三
5、、解答题(共8题,共72分)17(8分)如图是某旅游景点的一处台阶,其中台阶坡面AB和BC的长均为6m,AB部分的坡角BAD为45,BC部分的坡角CBE为30,其中BDAD,CEBE,垂足为D,E现在要将此台阶改造为直接从A至C的台阶,如果改造后每层台阶的高为22cm,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm且不足22cm时,按一个台阶计算可能用到的数据:1.414,1.732)18(8分)解分式方程:=19(8分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数(1)请画出树状图并写出所有可能
6、得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜你认为这个游戏公平吗?试说明理由20(8分)已知:如图,在ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且AGE=CGN.(1)求证:四边形ENFM为平行四边形;(2)当四边形ENFM为矩形时,求证:BE=BN.21(8分)已知关于 x 的一元二次方程 x22(k1)x+k(k+2)0 有两个不相等的实数根求 k 的取值范围;写出一个满足条件的 k 的值,并求此时方程的根22(10分)有甲、乙两个不透明的布袋,甲袋中有
7、两个完全相同的小球,分别标有数字1和1;乙袋中有三个完全相同的小球,分别标有数字1、0和1小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y)(1)请用表格或树状图列出点P所有可能的坐标;(1)求点P在一次函数yx1图象上的概率23(12分)综合与实践折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究问题背景:在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C处,点D落在点D处,射线EC与射线DA相交于点M猜想与证明:
8、(1)如图1,当EC与线段AD交于点M时,判断MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段CD分别与AD,AB交于P,N两点时,CE与AB交于点Q,连接MN 并延长MN交EF于点O 求证:MOEF 且MO平分EF;(4)若AB=4,AD=4,在点E由点B运动到点C的过程中,点D所经过的路径的长为 24解不等式组 请结合题意填空,完成本题的解答(I)解不等式(1),得 ;(II)解不等式(2),得 ;(III)把不等
9、式和的解集在数轴上表示出来:(IV)原不等式组的解集为 参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】利用正方体及其表面展开图的特点依次判断解题【详解】由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C【点睛】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键2、C【解析】由可知56,即可解出.【详解】56,故选C.【点睛】此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.3、A【解析】试题解析:,m2+2+=0,m2+2=-,方程的解可以看作是函数y=m2+2与函数y=
10、-,作函数图象如图,在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-的y值随m的增大而增大,当m=-2时y=m2+2=4+2=6,y=-=-=2,62,交点横坐标大于-2,当m=-1时,y=m2+2=1+2=3,y=-=-=4,34,交点横坐标小于-1,-2m-1故选A考点:1.二次函数的图象;2.反比例函数的图象4、A【解析】解:四边形AOBC是矩形,ABO=10,点B的坐标为(0,),AC=OB=,CAB=10,BC=ACtan10=1将ABC沿AB所在直线对折后,点C落在点D处,BAD=10,AD=过点D作DMx轴于点M,CAB=BAD=10,DAM=10,DM=AD=,A
11、M=cos10=,MO=1=,点D的坐标为(,)故选A5、A【解析】根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系【详解】解:y=-1x1-8x+m,此函数的对称轴为:x=-=-=-1,x1x1-1,两点都在对称轴左侧,a0,对称轴左侧y随x的增大而增大,y1y1故选A【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键6、C【解析】根据反比例函数的图像性质进行判断【详解】解:,电压为定值,I关于R的函数是反比例函数,且图象在第一象限,故选C【点睛】本题考查反比例函数的图像,掌握图像性质是解题关键7、A【解析】试题解析:A、x2
12、x2x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意故选A8、A【解析】xa=2,xb=3,x3a2b=(xa)3(xb)2=89= ,故选A.9、C【解析】试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为10、C【解析】根据旋转的性质和三角形内角和解答即可【详解】将ABC绕点C顺时针旋转90得到EDCDCE=A
13、CB=20,BCD=ACE=90,AC=CE,ACD=90-20=70,点A,D,E在同一条直线上,ADC+EDC=180,EDC+E+DCE=180,ADC=E+20,ACE=90,AC=CEDAC+E=90,E=DAC=45在ADC中,ADC+DAC+DCA=180,即45+70+ADC=180,解得:ADC=65,故选C【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得
14、x=3y,联立两个方程即可【详解】根据图示可得,故答案是:【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽12、4【解析】连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案【详解】如图,连接并延长交于G,连接并延长交于H,点E、F分别是和的重心,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍13、4a(2a+1)(2a1)【解析】首先提取公因式
15、,再利用平方差公式分解即可【详解】原式=4a(4a21)=4a(2a+1)(2a1),故答案为4a(2a+1)(2a1)【点睛】本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法14、 【解析】设B型机器人每小时搬运xkg物品,则A型机器人每小时搬运(x+20)kg物品,根据“A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等”可列方程【详解】设B型机器人每小时搬运xkg物品,则A型机器人每小时搬运(x+20)kg物品,根据题意可得,故答案为【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出关于x的分式方程本题属于基础题,难度
16、不大,解决该题型题目时,根据数量关系列出方程是关键15、【解析】垂径定理,勾股定理,锐角三角函数的定义。【分析】如图,设AB与CD相交于点E,则根据直径AB=26,得出半径OC=13;由CD=24,CDAB,根据垂径定理得出CE=12;在RtOCE中,利用勾股定理求出OE=5;再根据正弦函数的定义,求出sinOCE的度数:。16、2【解析】延长AC交x轴于B根据光的反射原理,点B、B关于y轴对称,CB=CB路径长就是AB的长度结合A点坐标,运用勾股定理求解【详解】解:如图所示,延长AC交x轴于B则点B、B关于y轴对称,CB=CB作ADx轴于D点则AD=3,DB=3+1=1由勾股定理AB=2AC
17、+CB = AC+CB= AB=2即光线从点A到点B经过的路径长为2考点:解直角三角形的应用点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键三、解答题(共8题,共72分)17、33层【解析】根据含30度的直角三角形三边的关系和等腰直角三角形的性质得到BD和CE的长,二者的和乘以100后除以20即可确定台阶的数【详解】解:在RtABD中,BD=ABsin45=3m,在RtBEC中,EC=BC=3m,BD+CE=3+3,改造后每层台阶的高为22cm,改造后的台阶有(3+3)1002233(个)答:改造后的台阶有33个【点睛】本题考查了坡度的概念:斜坡的坡度
18、等于斜坡的铅直高度与对应的水平距离的比值,即斜坡的坡度等于斜坡的坡角的正弦也考查了含30度的直角三角形三边的关系和等腰直角三角形的性质18、x=1【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】方程两边都乘以x(x2),得:x=1(x2),解得:x=1,检验:x=1时,x(x2)=11=10,则分式方程的解为x=1【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验19、(1)见解析(2)不公平。理由见解析【解析】解:(1)画树状图得:所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,2
19、14,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432。(2)这个游戏不公平。理由如下:组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个,甲胜的概率为,乙胜的概率为。甲胜的概率乙胜的概率,这个游戏不公平。(1)首先根据题意画出树状图,由树状图即可求得所有可能得到的三位数。(2)由(1),可求得甲胜和乙胜的概率,比较是否相等即可得到答案。20、(1)证明见解析;(2)证明见解析.【解析】分析:(1)由已知条件易得EAG=FCG,AG=GC结合AGE=FGC可得EAG
20、FCG,从而可得EAGFCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四边形ENFM是平行四边形;(2)如下图,由四边形ENFM为矩形可得EG=NG,结合AG=CG,AGE=CGN可得EAGNCG,则BAC=ACB ,AE=CN,从而可得AB=CB,由此可得BE=BN.详解:(1)四边形ABCD为平行四四边形边形,AB/CD. EAG=FCG. 点G为对角线AC的中点,AG=GC. AGE=FGC,EAGFCG. EG=FG. 同理MG=NG.四边形ENFM为平行四边形. (2)四边形ENFM为矩形,EF=MN,且EG=,GN=,EG=NG,又AG=CG,AGE=CGN,EAGNC
21、G,BAC=ACB ,AE=CN,AB=BC,AB-AE=CB-CN,BE=BN.点睛:本题是一道考查平行四边形的判定和性质及矩形性质的题目,熟练掌握相关图形的性质和判定是顺利解题的关键.21、方程的根【解析】(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根【详解】(1)关于x的一元二次方程x11(ka)x+k(k+1)=0有两个不相等的实数根,=1(k1)14k(k1)=16k+40,解得:k (1)当k=0时,原方程为x1+1x=x(x+1)=0,解得:x1=0,x1=1当k=0时
22、,方程的根为0和1【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程22、(1)见解析;(1).【解析】试题分析:(1)画出树状图(或列表),根据树状图(或表格)列出点P所有可能的坐标即可;(1)根据(1)的所有结果,计算出这些结果中点P在一次函数图像上的个数,即可求得点P在一次函数图像上的概率.试题解析:(1)画树状图:或列表如下:点P所有可能的坐标为(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).只有(1,1)与(-1,-1)这两个点在一次函数图像上,P(
23、点P在一次函数图像上)=.考点:用(树状图或列表法)求概率.23、(1)MEF是等腰三角形(2)见解析(3)证明见解析(4) 【解析】(1)由ADBC,可得MFECEF,由折叠可得,MEFCEF,依据MFEMEF,即可得到MEMF,进而得出MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D的位置;(3)依据BEQDFP,可得PFQE,依据NCPNAP,可得ANCN,依据RtMCNRtMAN,可得AMNCMN,进而得到MEF是等腰三角形,依据三线合一,即可得到MOEF 且MO平分EF;(4)依据点D所经过的路径是以O为圆心,4为半径,圆心角为240的扇形
24、的弧,即可得到点D所经过的路径的长【详解】(1)MEF是等腰三角形理由:四边形ABCD是矩形,ADBC,MFE=CEF,由折叠可得,MEF=CEF,MFE=MEF,ME=MF,MEF是等腰三角形(2)折痕EF和折叠后的图形如图所示:(3)如图,FD=BE,由折叠可得,DF=DF,BE=DF,在NCQ和NAP中,CNQ=ANP,NCQ=NAP=90,CQN=APN,CQN=BQE,APN=DPF,BQE=DPF,在BEQ和DFP中,BEQDFP(AAS),PF=QE,四边形ABCD是矩形,AD=BC,ADFD=BCBE,AF=CE,由折叠可得,CE=EC,AF=CE,AP=CQ,在NCQ和NAP
25、中,NCPNAP(AAS),AN=CN,在RtMCN和RtMAN中,RtMCNRtMAN(HL),AMN=CMN,由折叠可得,CEF=CEF,四边形ABCD是矩形,ADBC,AFE=FEC,CEF=AFE,ME=MF,MEF是等腰三角形,MOEF 且MO平分EF;(4)在点E由点B运动到点C的过程中,点D所经过的路径是以O为圆心,4为半径,圆心角为240的扇形的弧,如图:故其长为L=故答案为【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键24、(1)x;(1)x1;(3)答案见解析;(4)x1【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【详解】解:(I)解不等式(1),得x;(II)解不等式(1),得x1;(III)把不等式和的解集在数轴上表示出来:(IV)原不等式组的解集为:x1故答案为x、x1、x1【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键