《2023届辽宁省锦州黑山县中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届辽宁省锦州黑山县中考三模数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1比1小2的数是( )ABCD2剪纸是我国传统的民间艺术下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )ABCD3我市连续7天的最高气温为:28,27,30,33,30,30,32,这组数据的平均数和众数分别是( )A28,30B30,28C31,30D30,304下列运算正确的是()Aa4+a2=a4B(x2y)3=x6y3C(mn)2=m2n2Db6b2=b35如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离
3、x(m)满足关系式ya(xk)2+h已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A球不会过网B球会过球网但不会出界C球会过球网并会出界D无法确定6下列判断正确的是()A任意掷一枚质地均匀的硬币10次,一定有5次正面向上B天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C“篮球队员在罚球线上投篮一次,投中”为随机事件D“a是实数,|a|0”是不可能事件7半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A3B4CD82018年春运,全国旅客发送量达29.8亿人次,
4、用科学记数法表示29.8亿,正确的是()A29.8109B2.98109C2.981010D0.29810109下列事件中为必然事件的是( )A打开电视机,正在播放茂名新闻B早晨的太阳从东方升起C随机掷一枚硬币,落地后正面朝上D下雨后,天空出现彩虹10某排球队名场上队员的身高(单位:)是:,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )A平均数变小,方差变小B平均数变小,方差变大C平均数变大,方差变小D平均数变大,方差变大11如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为 cm2,则扇形圆心角
5、的度数为()A120B140C150D16012如图,在正方形网格中建立平面直角坐标系,若,则点C的坐标为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,点C在以AB为直径的半圆上,AB8,CBA30,点D在线段AB上运动,点E与点D关于AC对称,DFDE于点D,并交EC的延长线于点F下列结论:CECF;线段EF的最小值为;当AD2时,EF与半圆相切;若点F恰好落在BC上,则AD;当点D从点A运动到点B时,线段EF扫过的面积是其中正确结论的序号是 14一组数据7,9,8,7,9,9,8的中位数是_15如图,BP是ABC中ABC的平分线,CP是ACB的外角的平分线,
6、如果ABP=20,ACP=50,则P=_16分解因式:2x34x2+2x_17对于二次函数yx24x+4,当自变量x满足ax3时,函数值y的取值范围为0y1,则a的取值范围为_18如图,把RtABC放在直角坐标系内,其中CAB=90,BC=5,点A,B的坐标分别为(1,0),(4,0),将ABC沿x轴向左平移,当点C落在直线y=2x6上时,则点C沿x轴向左平移了_个单位长度三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,
7、已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高20(6分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点 (1)如图1,若ABC为直角三角形,求的值;(2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、Q为顶点的四边形是平行四边形,求点的坐标;(3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若=11 求的值21(6分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 (2)甲、乙、丙三人依次从袋中摸出一个球,记录
8、颜色后不放回,试求出乙摸到白球的概率22(8分)如图,在四边形ABCD中,ACBD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分ABE; (2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长; (3)如图,若点F为AB的中点,连结FN、FM,求证:MFNBDC23(8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分100分;B级:75分89分;C级:60分74分;D级:
9、60分以下)(1)写出D级学生的人数占全班总人数的百分比为 ,C级学生所在的扇形圆心角的度数为 ;(2)该班学生体育测试成绩的中位数落在等级 内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?24(10分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最
10、多可以购买多少个篮球?25(10分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图,所示的统计图,已知“查资料”的人数是40人请你根据图中信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_;(2)补全条形统计图;(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.26(12分)一艘观光游船从港口A以北偏东60的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37方向,马上以
11、40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间(温馨提示:sin530.8,cos530.6)27(12分)如图1,抛物线l1:y=x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5)(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值参考答案一、选择题(本大题共12个小题,
12、每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】1-2=-1,故选C2、A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误故选A考点:中心对称图形;轴对称图形3、D【解析】试题分析:数据28,27,30,33,30,30,32的平均数是(28+27+30+33+30+30+32)7=30,30出现了3次,出现的次数最多,则众数是30;
13、故选D考点:众数;算术平均数4、B【解析】分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;根据同底数幂的除法,可知b6b2=b4,不正确.故选B.点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.5、C【解析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.4
14、3、0比较大小可得详解:根据题意,将点A(0,2)代入 得:36a+2.6=2,解得: y与x的关系式为 当x=9时, 球能过球网,当x=18时, 球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.6、C【解析】直接利用概率的意义以及随机事件的定义分别分析得出答案【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|0”是必然事件,故此选项错误故选C【点睛】此题
15、主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键7、C【解析】如图所示:过点O作ODAB于点D,OB=3,AB=4,ODAB,BD=AB=4=2,在RtBOD中,OD=故选C8、B【解析】根据科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,且为这个数的整数位数减1,由此即可解答【详解】29.8亿用科学记数法表示为: 29.8亿=29800000002.981故选B【点睛】本题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值9、B【解析】分析:根据必然事件、不可能事件、随机事件的概
16、念可区别各类事件:A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B、早晨的太阳从东方升起,是必然事件,故本选项正确;C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误故选B10、A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为=188,方差为S2=;换人后6名队员身高的平均数为=187,方差为S2=188187,平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的
17、定义:一般地设n个数据,x1,x2,xn的平均数为,则方差S2=(x1-)2+(x2-)2+(xn-)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11、C【解析】根据扇形的面积公式列方程即可得到结论【详解】OB=10cm,AB=20cm,OA=OB+AB=30cm,设扇形圆心角的度数为,纸面面积为 cm2,=150,故选:C【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .12、C【解析】根据A点坐标即可建立平面直角坐标【详解】解:由A(0,2),B(1,1)可知原点的位置,建立平面直角坐标系,如图,C(2,-1)故选:C【点睛】
18、本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型二、填空题:(本大题共6个小题,每小题4分,共24分)13、.【解析】试题分析:连接CD,如图1所示,点E与点D关于AC对称,CE=CD,E=CDE,DFDE,EDF=90,E+F=90,CDE+CDF=90,F=CDF,CD=CF,CE=CD=CF,结论“CE=CF”正确;当CDAB时,如图2所示,AB是半圆的直径,ACB=90,AB=8,CBA=30,CAB=60,AC=4,BC=CDAB,CBA=30,CD=BC=根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为CE=CD=CF,EF=2CD线
19、段EF的最小值为结论“线段EF的最小值为”错误;当AD=2时,连接OC,如图3所示,OA=OC,CAB=60,OAC是等边三角形,CA=CO,ACO=60,AO=4,AD=2,DO=2,AD=DO,ACD=OCD=30,点E与点D关于AC对称,ECA=DCA,ECA=30,ECO=90,OCEF,EF经过半径OC的外端,且OCEF,EF与半圆相切,结论“EF与半圆相切”正确;当点F恰好落在上时,连接FB、AF,如图4所示,点E与点D关于AC对称,EDAC,AGD=90,AGD=ACB,EDBC,FHCFDE,FH:FD=FC:FE,FC=EF,FH=FD,FH=DH,DEBC,FHC=FDE=
20、90,BF=BD,FBH=DBH=30,FBD=60,AB是半圆的直径,AFB=90,FAB=30,FB=AB=4,DB=4,AD=ABDB=4,结论“AD=”错误;点D与点E关于AC对称,点D与点F关于BC对称,当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称,EF扫过的图形就是图5中阴影部分,S阴影=2SABC=2ACBC=ACBC=4=,EF扫过的面积为,结论“EF扫过的面积为”正确故答案为考点:1圆的综合题;2等边三角形的判定与性质;3切线的判定;4相似三角形的判定与性质14、1【解析】将一组数据按照从小到大(或从大到小)的顺序排列,
21、如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,据此可得【详解】解:将数据重新排列为7、7、1、1、9、9、9,所以这组数据的中位数为1,故答案为1【点睛】本题主要考查中位数,解题的关键是掌握中位数的定义15、30【解析】根据角平分线的定义可得PBC=20,PCM=50,根据三角形外角性质即可求出P的度数.【详解】BP是ABC的平分线,CP是ACM的平分线,ABP=20,ACP=50,PBC=20,PCM=50,PBC+P=PCM,P=PCM-PBC=50-20=30,故答案为:30【点睛】本题考查及角平分线的定
22、义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.16、2x(x-1)2【解析】2x34x2+2x= 17、1a1【解析】根据y的取值范围可以求得相应的x的取值范围【详解】解:二次函数yx14x+4(x1)1,该函数的顶点坐标为(1,0),对称轴为:x,把y0代入解析式可得:x1,把y1代入解析式可得:x13,x11,所以函数值y的取值范围为0y1时,自变量x的范围为1x3,故可得:1a1,故答案为:1a1【点睛】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答18、1【解析】先根据勾股定理求得AC的长,从而
23、得到C点坐标,然后根据平移的性质,将C点纵轴代入直线解析式求解即可得到答案.【详解】解:在RtABC中,AB=1(1)=3,BC=5,AC=1,点C的坐标为(1,1)当y=2x6=1时,x=5,1(5)=1,点C沿x轴向左平移1个单位长度才能落在直线y=2x6上故答案为1【点睛】本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、树高为 5.5 米【解析】根据两角相等的两个三角形相似,可得 DEFDCB ,利用相似三角形的对边成比例,可得
24、, 代入数据计算即得BC的长,由 ABAC+BC ,即可求出树高.【详解】DEFDCB90,DD, DEFDCB ,DE0.4m,EF0.2m,CD8m, CB4(m),ABAC+BC1.5+45.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型20、 (1) ;(2) 和;(3) 【解析】(1)设,再根据根与系数的关系得到,根据勾股定理得到:、 ,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标;(3)过点
25、作DH轴于点,由:,可得:设,可得 点坐标为,可得设点坐标为.可证,利用相似性质列出方程整理可得到 ,将代入抛物线上,可得,联立解方程组,即可解答.【详解】解:设,则是方程的两根,已知抛物线与轴交于点在中:,在中:,为直角三角形,由题意可知,即,,解得:,又,由可知:,令则,以为边,以点、Q为顶点的四边形是四边形时,设抛物线的对称轴为 ,l与交于点,过点作l,垂足为点,即四边形为平行四边形,又l轴,=,点的横坐标为,即点坐标为当以为边,以点、Q为顶点的四边形是四边形时,设抛物线的对称轴为 ,l与交于点,过点作l,垂足为点,即四边形为平行四边形,又l轴,=,点的横坐标为,即点坐标为符合条件的点坐
26、标为和 过点作DH轴于点,:, :设,则点坐标为,点在抛物线上,点坐标为,由(1)知,即,又在抛物线上,,将代入得:,解得(舍去),把代入得:【点睛】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.21、 (1);(2).【解析】(1)直接利用概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解【详解】解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;故答案为:;(2)画树状图为:共有6种等可能的结果数,其中乙摸到白球的结果数为2,所以乙摸到白
27、球的概率=【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率22、(1)证明见解析;(2);(3)证明见解析. 【解析】分析:(1)由AB=AC知ABC=ACB,由等腰三角形三线合一知AMBC,从而根据MAB+ABC=EBC+ACB知MAB=EBC,再由MBN为等腰直角三角形知EBC+NBE=MAB+ABN=MNB=45可得证;(2)设BM=CM=MN=a,知DN=BC=2a,证ABNDBN得AN=DN=2a,RtABM中利用勾股定理可得a的值,从而得出答案;(3)F是AB的中点知MF=AF=B
28、F及FMN=MAB=CBD,再由即可得证详解:(1)AB=AC,ABC=ACB,M为BC的中点,AMBC,在RtABM中,MAB+ABC=90,在RtCBE中,EBC+ACB=90,MAB=EBC,又MB=MN,MBN为等腰直角三角形,MNB=MBN=45,EBC+NBE=45,MAB+ABN=MNB=45,NBE=ABN,即BN平分ABE;(2)设BM=CM=MN=a,四边形DNBC是平行四边形,DN=BC=2a,在ABN和DBN中,ABNDBN(SAS),AN=DN=2a,在RtABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=(负值舍去),BC=2a=;(3)F是
29、AB的中点,在RtMAB中,MF=AF=BF,MAB=FMN,又MAB=CBD,FMN=CBD,MFNBDC点睛:本题主要考查相似形的综合问题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点23、(1)4%;(2)72;(3)380人【解析】(1)根据A级人数及百分数计算九年级(1)班学生人数,用总人数减A、B、D级人数,得C级人数,再用C级人数总人数360,得C等级所在的扇形圆心角的度数;(2)将人数按级排列,可得该班学生体育测试成绩的中位数;(3)用(A级百分数+B级百分数)1900,得这次考试中获得A级和B级的九年级学生
30、共有的人数;(4)根据各等级人数多少,设计合格的等级,使大多数人能合格【详解】解:(1)九年级(1)班学生人数为1326%=50人,C级人数为50-13-25-2=10人,C等级所在的扇形圆心角的度数为1050360=72,故答案为72;(2)共50人,其中A级人数13人,B级人数25人,故该班学生体育测试成绩的中位数落在B等级内,故答案为B;(3)估计这次考试中获得A级和B级的九年级学生共有(26%+2550)1900=1444人;(4)建议:把到达A级和B级的学生定为合格,(答案不唯一)24、(1)一个足球需要50元,一个篮球需要80元;(2)1个.【解析】(1)设购买一个足球需要x元,则
31、购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;【详解】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100m)6000,解得:m1,m是整数,m最大可取1答:这所中学最多可以购买篮球1个【点睛】本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般25、(1)126;(2)作图见解析(3)768【解析】试
32、题分析:(1)根据扇形统计图求出所占的百分比,然后乘以360即可;(2)利用“查资料”人人数是40人,查资料”人占总人数40%,求出总人数100,再求出32人 ;(3)用部分估计整体.试题解析:(1)126 (2)4040%216183232人 (3)1200=768人考点:统计图26、小时【解析】过点C作CDAB交AB延长线于D先解RtACD得出CD=AC=40海里,再解RtCBD中,得出BC=50,然后根据时间=路程速度即可求出海警船到大事故船C处所需的时间【详解】解:如图,过点C作CDAB交AB延长线于D在RtACD中,ADC=90,CAD=30,AC=80海里,CD=AC=40海里在R
33、tCBD中,CDB=90,CBD=9037=53,BC=50(海里),海警船到大事故船C处所需的时间大约为:5040=(小时)考点:解直角三角形的应用-方向角问题27、(1)抛物线l2的函数表达式;y=x24x1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【解析】(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CHPG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3y |,PG=|y |,AG=2,
34、由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为1,4,当1x4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;当4x1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)抛物线l1:y=x2+bx+3对称轴为x=1,x=1,b=2,抛物线l1的函数表达式为:y=x2+2x+3,当y=0时,x2+2x+3=0,解得:x1=3,x2=1,A(1,0),B(3,0),设抛物线l2的函数表达式
35、;y=a(x1)(x+1),把D(0,1)代入得:1a=1,a=1,抛物线l2的函数表达式;y=x24x1;(2)作CHPG交直线PG于点H,设P点坐标为(1,y),由(1)可得C点坐标为(0,3),CH=1,PH=|3y |,PG=|y |,AG=2,PC2=12+(3y)2=y26y+10,PA2= =y2+4,PC=PA,PA2=PC2,y26y+10=y2+4,解得y=1,P点坐标为(1,1);(3)由题意可设M(x,x24x1),MNy轴,N(x,x2+2x+3),令x2+2x+3=x24x1,可解得x=1或x=4,当1x4时,MN=(x2+2x+3)(x24x1)=2x2+6x+8=2(x)2+,显然14,当x=时,MN有最大值12.1;当4x1时,MN=(x24x1)(x2+2x+3)=2x26x8=2(x)2,显然当x时,MN随x的增大而增大,当x=1时,MN有最大值,MN=2(1)2=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【点睛】本题是二次函数与几何综合题, 主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.