江西省赣州三中2023年高三第五次模拟考试数学试卷含解析.doc

上传人:lil****205 文档编号:88309252 上传时间:2023-04-25 格式:DOC 页数:20 大小:2.38MB
返回 下载 相关 举报
江西省赣州三中2023年高三第五次模拟考试数学试卷含解析.doc_第1页
第1页 / 共20页
江西省赣州三中2023年高三第五次模拟考试数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《江西省赣州三中2023年高三第五次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省赣州三中2023年高三第五次模拟考试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数(, , )的部分图象如图所示,则的值分别为( )A2,0B2, C2, D2, 2赵爽是我国古代

2、数学家、天文学家,大约公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )ABCD3国务院发布关于进一步调整优化结构、提高教育经费使用效益的意见中提出,要优先落实教育投入某研究机构统计了年至年国家财政性教育经费投入情况及其在中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A随着文化教育

3、重视程度的不断提高,国在财政性教育经费的支出持续增长B年以来,国家财政性教育经费的支出占比例持续年保持在以上C从年至年,中国的总值最少增加万亿D从年到年,国家财政性教育经费的支出增长最多的年份是年4已知下列命题:“”的否定是“”;已知为两个命题,若“”为假命题,则“”为真命题;“”是“”的充分不必要条件;“若,则且”的逆否命题为真命题.其中真命题的序号为( )ABCD5已知函数()的最小值为0,则( )ABCD6ABC的内角A,B,C的对边分别为,已知,则为( )ABC或D或7如图,在中,且,则( )A1BCD8设函数恰有两个极值点,则实数的取值范围是( )ABCD9数学中的数形结合,也可以组

4、成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线.给出下列结论:曲线C经过5个整点(即横、纵坐标均为整数的点);曲线C上任意一点到坐标原点O的距离都不超过2;曲线C围成区域的面积大于;方程表示的曲线C在第二象限和第四象限其中正确结论的序号是( )ABCD10数列的通项公式为则“”是“为递增数列”的( )条件A必要而不充分B充要C充分而不必要D即不充分也不必要11已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为( )ABCD12已知函数满足,当时,则( )A或B或C或D或二、填空题:本题共4小题,每小题5分,共20分。13

5、已知椭圆的左、右焦点分别为、,过椭圆的右焦点作一条直线交椭圆于点、.则内切圆面积的最大值是_.14在中,角的平分线交于,则面积的最大值为_15已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为_.16在三棱锥中,两两垂直且,点为的外接球上任意一点,则的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列满足,其前n项和为.(1)通过计算,猜想并证明数列的通项公式;(2)设数列满足,若数列是单调递减数列,求常数t的取值范围.18(12分)如图,在直三棱柱中,为的中点,点在线段上,且平面(1)求证:;(2)求平面

6、与平面所成二面角的正弦值19(12分)已知函数,设(1)当时,求函数的单调区间;(2)设方程(其中为常数)的两根分别为,证明:(注:是的导函数)20(12分)在极坐标系中,已知曲线,(1)求曲线、的直角坐标方程,并判断两曲线的形状;(2)若曲线、交于、两点,求两交点间的距离21(12分)若关于的方程的两根都大于2,求实数的取值范围22(10分)选修4-5:不等式选讲已知函数()解不等式;()对及,不等式恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意结合函数的图象,求出周期,根据周期公式

7、求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果2、D【解析】设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【详解】由题意,设,则,即小正六边形的边长为,所以,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力

8、,属于基础题3、C【解析】观察图表,判断四个选项是否正确【详解】由表易知、项均正确,年中国为万亿元,年中国为万亿元,则从年至年,中国的总值大约增加万亿,故C项错误【点睛】本题考查统计图表,正确认识图表是解题基础4、B【解析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断【详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则且”是假命题,则它的逆否命题为假命题,错误.故选:B【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础5、C【解析】设,计算

9、可得,再结合图像即可求出答案.【详解】设,则,则,由于函数的最小值为0,作出函数的大致图像, 结合图像,得,所以.故选:C【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.6、D【解析】由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.7、C【解析】由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案【详解】由,则,即,所以,又共线,则.故选:C【点睛】此题考查的是平面向量基本定

10、理的有关知识,结合图形寻找各向量间的关系,属于中档题.8、C【解析】恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.9、B【解析】利用基本不等式得,可判断;和联立解得可判断;由图可判断.【详解】,

11、解得(当且仅当时取等号),则正确;将和联立,解得,即圆与曲线C相切于点,则和都错误;由,得正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.10、A【解析】根据递增数列的特点可知,解得,由此得到若是递增数列,则,根据推出关系可确定结果.【详解】若“是递增数列”,则,即,化简得:,又,则是递增数列,是递增数列,“”是“为递增数列”的必要不充分条件故选:.【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.11、B【解析】根据三角函数定义得到,故,再利用和差公式得到答案.【详解】角的终

12、边过点,.故选:.【点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.12、C【解析】简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【详解】由,可知函数关于对称当时,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,考验分析能力,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】令直线:,与椭圆方程联立消去得,可设,则,可知,又,故三角形周长与三角形内切圆的半径的积是三角形面积的二倍,则内切圆半径,其面积最大值为故本题应

13、填点睛:圆锥曲线中最值与范围的求法有两种:()几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法()代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立起目标函数,再求这个函数的最值,求函数最值的常用方法有配方法,判别式法,重要不等式及函数的单调性法等14、15【解析】由角平分线定理得,利用余弦定理和三角形面积公式,借助三角恒等变化求出面积的最大值.【详解】画出图形:因为,由角平分线定理得,设,则由余弦定理得:即当且仅当,即时取等号所以面积的最大值为15故答案为:15【点睛】此题考查解三角形面积的最值问题,通过三角恒等变形后利用均值不等式处理,属

14、于一般性题目.15、【解析】作出图象,求出方程的根,分类讨论的正负,数形结合即可.【详解】当时,令,解得,所以当时,则单调递增,当时,则单调递减,当时,单调递减,且,作出函数的图象如图:(1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,此时各有1解,故当时,方程整理得,有1解同时有2解,即需,因为(2),故此时满足题意;或有2解同时有1解,则需,由(1)可知不成立;或有3解同时有0解,根据图象不存在此种情况,或有0解同时有3解,则,解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意综上:的范围是,故答案为:,【点睛】本题主要考查了函数零点与函数图象

15、的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题16、【解析】先根据三棱锥的几何性质,求出外接球的半径,结合向量的运算,将问题转化为求球体表面一点到外心距离最大的问题,即可求得结果.【详解】因为两两垂直且,故三棱锥的外接球就是对应棱长为2的正方体的外接球.且外接球的球心为正方体的体对角线的中点,如下图所示:容易知外接球半径为.设线段的中点为,故可得,故当取得最大值时,取得最大值.而当在同一个大圆上,且,点与线段在球心的异侧时,取得最大值,如图所示:此时,故答案为:.【点睛】本题考查球体的几何性质,几何体的外接球问题,涉及向量的线性运算以及数量

16、积运算,属综合性困难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),证明见解析;(2)【解析】(1)首先利用赋值法求出的值,进一步利用定义求出数列的通项公式;(2)首先利用叠乘法求出数列的通项公式,进一步利用数列的单调性和基本不等式的应用求出参数的范围【详解】(1)数列满足,其前项和为所以,则,所以猜想得:证明:由于,所以,则:(常数),所以数列是首项为1,公差为的等差数列所以,整理得(2)数列满足,所以,则,所以则,所以,所以,整理得,由于,所以,即【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠乘法的应用,函数的单调性在数列中的应用,基本不等式的应

17、用,主要考察学生的运算能力和转换能力,属于中档题型18、见解析【解析】(1)如图,连接,交于点,连接,则为的中点,因为为的中点,所以,又,所以,从而,四点共面因为平面,平面,平面平面,所以又,所以四边形为平行四边形,所以,所以(2)因为,为的中点,所以,又三棱柱是直三棱柱,所以,互相垂直,分别以,的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,因为,所以,所以,设平面的法向量为,则,即,令,可得,所以平面的一个法向量为设平面的法向量为,则,即,令,可得,所以平面的一个法向量为,所以,所以平面与平面所成二面角的正弦值为19、(1)在上单调递增,在上单调递减(2)见解析【解析】(1)求出

18、导函数,由确定增区间,由确定减区间;(2)求出含有参数的,再求出,由的两根是,得,计算,代入后可得结论【详解】解:,函数的定义域为,(1)当时,由得,由得,故函数在上单调递增,在上单调递减(2)证明:由条件可得,方程的两根分别为,且,可得【点睛】本题考查用导数研究函数的单调性,考查导数的运算、方程根的知识在可导函数中一般由确定增区间,由确定减区间20、(1)表示一条直线,是圆心为,半径为的圆;(2).【解析】(1)直接利用极坐标方程与直角坐标方程之间的转换关系可将曲线的方程化为直角坐标方程,进而可判断出曲线的形状,在曲线的方程两边同时乘以得,由可将曲线的方程化为直角坐标方程,由此可判断出曲线的

19、形状;(2)由直线过圆的圆心,可得出为圆的一条直径,进而可得出.【详解】(1),则曲线的普通方程为,曲线表示一条直线;由,得,则曲线的直角坐标方程为,即所以,曲线是圆心为,半径为的圆;(2)由(1)知,点在直线上,直线过圆的圆心因此,是圆的直径,【点睛】本题考查曲线的极坐标方程与直角坐标方程之间的转化,同时也考查了直线截圆所得弦长的计算,考查计算能力,属于基础题.21、【解析】先令,根据题中条件得到,求解,即可得出结果.【详解】因为关于的方程的两根都大于2,令所以有,解得,所以.【点睛】本题主要考查一元二次方程根的分布问题,熟记二次函数的特征即可,属于常考题型.22、().().【解析】详解:()当时,由,解得;当时,不成立;当时,由,解得.所以不等式的解集为.()因为,所以.由题意知对,即,因为,所以,解得.【点睛】 绝对值不等式解法的基本思路是:去掉绝对值号,把它转化为一般的不等式求解,转化的方法一般有:绝对值定义法;平方法;零点区域法 不等式的恒成立可用分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围这种方法本质也是求最值一般有: 为参数)恒成立 为参数)恒成立

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁