《浙江省杭州市西湖区2022-2023学年中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省杭州市西湖区2022-2023学年中考三模数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,O的半径OA=6,以A为圆心,OA为半径的弧交O于B、C点,则BC=()A6B6C3D32在平面直角坐标系中,函数的图象经过( )A第一、二、三象限B第一、二、四象限C第一、三、四象限D第二、三、四象限3如图,AOB45,OC是AOB的角平分线,PMOB,垂足为点M,PNOB,PN与OA相交于点N,那么的值等于()ABCD4如图,O为直线 AB上一点,OE平分BOC,ODOE 于点 O,若BOC=80,则AOD的度数是( )A70B50C40D355下列成语描述的事件为随机事件的是
3、()A水涨船高 B守株待兔 C水中捞月 D缘木求鱼6如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A(3,2)B(3,1)C(2,2)D(4,2)7下列各数:,sin30, ,其中无理数的个数是()A1个B2个C3个D4个8一个几何体的三视图如图所示,这个几何体是()A棱柱 B正方形 C圆柱 D圆锥9如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是 30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面
4、积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()ABCD10剪纸是我国传统的民间艺术下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )ABCD11如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A5BCD12义安区某中学九年级人数相等的甲、乙两班学生参加同一次数学测试,两班平均分和方差分别为甲=89分,乙=89分,S甲2=195,S乙2=1那么成绩较为整齐的是()A甲班B乙班C两班一样D无法确定二、填空题:(本大题共6个小题,每小题4分,共24分)13将一个含45角的
5、三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为_14已知是一元二次方程的一个根,则方程的另一个根是_15如图,在RtABC中,ACB90,A30,BC2,点D是边AB上的动点,将ACD沿CD所在的直线折叠至CDA的位置,CA交AB于点E若AED为直角三角形,则AD的长为_16如图,在ABC中,BE平分ABC,DEBC,如果DE=2AD,AE=3,那么EC=_17对于函数,若x2,则y_3(填“”或“”)18一个不透明的袋子中装有三个小球,它们除分别标有的数字 1,3,5 不同外,其他完全相同从袋子中任意摸出一球后放回,再任意摸出一
6、球,则两次摸出的球所标数字之 和为8的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整)请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少
7、人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?20(6分)如图,一棵大树在一次强台风中折断倒下,未折断树杆与地面仍保持垂直的关系,而折断部分与未折断树杆形成的夹角树杆旁有一座与地面垂直的铁塔,测得米,塔高米在某一时刻的太阳照射下,未折断树杆落在地面的影子长为米,且点、在同一条直线上,点、也在同一条直线上求这棵大树没有折断前的高度(结果精确到,参考数据:,)21(6分)如图,已知矩形ABCD中,连接AC,请利用尺规作图法在对角线AC上求作一点E使得ABCCDE(保留作图痕迹不写作法)22(8分)如图,O中,AB是O的直径,G为
8、弦AE的中点,连接OG并延长交O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC(1)求证:BC是O的切线;(2)O的半径为5,tanA=,求FD的长23(8分)已知抛物线y=x26x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D(1)求抛物线的顶点C的坐标及A,B两点的坐标;(2)将抛物线y=x26x+9向上平移1个单位长度,再向左平移t(t0)个单位长度得到新抛物线,若新抛物线的顶点E在DAC内,求t的取值范围;(3)点P(m,n)(3m1)是抛物线y=x26x+9上一点,当PAB的面积是ABC面积的2倍时,求m
9、,n的值24(10分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到ACD,再将ACD沿DB方向平移到ACD的位置,若平移开始后点D未到达点B时,AC交CD于E,DC交CB于点F,连接EF,当四边形EDDF为菱形时,试探究ADE的形状,并判断ADE与EFC是否全等?请说明理由25(10分)如图,已知在ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的P与边BC的另一个交点为D,联结PD、AD(1)求ABC的面积;(2)设PB=x,APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果APD是直角三角形,求PB的长26(12分)计算:(
10、1)(2)27(12分)已知如图,在ABC中,B45,点D是BC边的中点,DEBC于点D,交AB于点E,连接CE(1)求AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】试题分析:根据垂径定理先求BC一半的长,再求BC的长解:如图所示,设OA与BC相交于D点. AB=OA=OB=6,OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD= 所以BC=2BD=.故选A.点睛:本题主要考查垂径定理和勾股定理. 解题的关键在
11、于要利用好题中的条件圆O与圆A的半径相等,从而得出OAB是等边三角形,为后继求解打好基础.2、A【解析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b当k0,bO时,图象过一、二、三象限,据此作答即可【详解】一次函数y=3x+1的k=30,b=10,图象过第一、二、三象限,故选A【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.3、B【解析】过点P作PEOA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得POM=OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出PNE=AOB,再根据直角三角形解答【详解
12、】如图,过点P作PEOA于点E,OP是AOB的平分线,PEPM,PNOB,POMOPN,PNEPON+OPNPON+POMAOB45,故选:B【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键4、B【解析】分析:由OE是BOC的平分线得COE=40,由ODOE得DOC=50,从而可求出AOD的度数.详解:OE是BOC的平分线,BOC=80,COE=BOC=80=40,ODOEDOE=90,DOC=DOE-COE=90-40=50,AOD=180-BOC-DOC=180-80-50=50
13、.故选B.点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线性质:若OC是AOB的平分线则AOC=BOC=AOB或AOB=2AOC=2BOC5、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B考点:随机事件.6、A【解析】正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,=,BG=6,AD=BC=2,ADBG,OADOBG,=,=,解得:OA=1,OB=3,C点坐标为:(3,2),故选A7、B【解析】根据无理数的三种形式:开
14、方开不尽的数,无限不循环小数,含有的数,找出无理数的个数即可【详解】sin30=,=3,故无理数有,-,故选:B【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:开方开不尽的数,无限不循环小数,含有的数8、C【解析】试题解析:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选C.9、A【解析】根据题意找到等量关系:矩形面积+三角形面积阴影面积30;(矩形面积阴影面积)(三角形面积阴影面积)4,据此列出方程组【详解】依题意得:故选A【点睛】考查了由实际问题抽象出二元一次方程组根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词
15、语,找出等量关系,列出方程组10、A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误故选A考点:中心对称图形;轴对称图形11、C【解析】先利用勾股定理求出AC的长,然后证明AEOACD,根据相似三角形对应边成比例列式求解即可【详解】AB=6,BC=8,AC=10(勾股定理);AO=AC=5,EOAC,AOE=ADC=90,EAO=CAD,AEOACD,即 ,解得,AE=,
16、DE=8=,故选:C【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键12、B【解析】根据方差的意义,方差反映了一组数据的波动大小,故可由两人的方差得到结论【详解】S甲2S乙2,成绩较为稳定的是乙班。故选:B.【点睛】本题考查了方差,解题的关键是掌握方差的概念进行解答.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】先求得ACO=60,得出OAC=30,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B的坐标【详解】解:ACB=45,BCB=75,ACB=120,ACO=60,OAC=30,AC
17、=2OC,点C的坐标为(1,0),OC=1,AC=2OC=2,ABC是等腰直角三角形,B点的坐标为【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题14、【解析】通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将2-代入计算即可【详解】设方程的另一根为x1,又x=2-,由根与系数关系,得x1+2-=4,解得x1=2+故答案为:【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解15、3或1【解析】分两种情况:情况一:如图一所示,
18、当ADE=90时;情况二:如图二所示,当AED=90时.【详解】解:如图,当ADE=90时,AED为直角三角形,A=A=30,AED=60=BEC=B,BEC是等边三角形,BE=BC=1,又RtABC中,AB=1BC=4,AE=1,设AD=AD=x,则DE=1x,RtADE中,AD=DE,x=(1x),解得x=3,即AD的长为3;如图,当AED=90时,AED为直角三角形,此时BEC=90,B=60,BCE=30,BE=BC=1,又RtABC中,AB=1BC=4,AE=41=3,DE=3x,设AD=AD=x,则RtADE中,AD=1DE,即x=1(3x),解得x=1,即AD的长为1;综上所述,
19、即AD的长为3或1故答案为3或1【点睛】本题考查了翻折变换,勾股定理,等腰直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键.16、1【解析】由BE平分ABC,DEBC,易得BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案【详解】解:DEBC,DEB=CBE,BE平分ABC,ABE=CBE,ABE=DEB,BD=DE,DE=2AD,BD=2AD,DEBC,AD:DB=AE:EC,EC=2AE=23=1故答案为:1【点睛】此题考查了平行线分线段成比例定理以及等腰三角形的判定与性质注意掌握线段的对应关系是解此题的关键17、【解析】
20、根据反比例函数的性质即可解答.【详解】当x2时,k6时,y随x的增大而减小x2时,y3故答案为:【点睛】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围 .18、【解析】根据题意列出表格或树状图即可解答【详解】解:根据题意画出树状图如下:总共有9种情况,其中两个数字之和为8的有2种情况,故答案为:【点睛】本题考查了概率的求解,解题的关键是画出树状图或列出表格,并熟记概率的计算公式三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)详见解析;(2)40%;(3)105;(4)【解析】(1)先求出参加活动的女
21、生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论【详解】(1)由条形图知,男生共有:10+20+13+9=52人,女生人数为100-52=48人,参加武术的女生为48-15-8-15=10人,参加武术的人数为20+10=30人,30100=30%,参加器乐的人数为9+15=24人,24100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%40%答
22、:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%(3)50021%=105(人)答:估计其中参加“书法”项目活动的有105人(4)答:正好抽到参加“器乐”活动项目的女生的概率为【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20、米【解析】试题分析:要求这棵大树没有折断前的高度,只要求出AB和AC的长度即可,根据题目中的条件可以求得AB和AC的长度,即可得到结论试题解析:解:ABEF,DEEF,ABC=90,ABDE,FABFDE, ,FB
23、=4米,BE=6米,DE=9米,得AB=3.6米,ABC=90,BAC=53,cosBAC=,AC= =6米,AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答21、详见解析【解析】利用尺规过D作DEAC,交AC于E,即可使得ABCCDE【详解】解:过D作DEAC,如图所示,CDE即为所求:【点睛】本题主要考查了尺规作图,相似三角形的判定,解决问题的关键是掌握相似三角形的判定方法22、(1)证明见解析(2) 【解析】(1)由点G是AE的中点,根据垂径定理可知ODAE,由等腰
24、三角形的性质可得CBF=DFG,D=OBD,从而OBD+CBF=90,从而可证结论;(2)连接AD,解RtOAG可求出OG=3,AG=4,进而可求出DG的长,再证明DAGFDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.【详解】(1)点G是AE的中点,ODAE,FC=BC,CBF=CFB,CFB=DFG,CBF=DFGOB=OD,D=OBD,D+DFG=90,OBD+CBF=90即ABC=90OB是O的半径,BC是O的切线;(2)连接AD,OA=5,tanA=,OG=3,AG=4,DG=ODOG=2,AB是O的直径,ADF=90,DAG+ADG=90,ADG+FDG=90D
25、AG=FDG,DAGFDG,DG2=AGFG,4=4FG,FG=1由勾股定理可知:FD=.【点睛】本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出CBF=DFG,D=OBD是解(1)的关键,证明证明DAGFDG是解(2)的关键.23、(1)C(2,0),A(1,4),B(1,9);(2)t5;(2)m=,n=.【解析】分析:()将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标 ()由题意可知:新抛物线的顶点坐标为(2t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解
26、析式中即可求出t的值,从而可知新抛物线的顶点E在DAC内,求t的取值范围 ()直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),易得CFAB,PAB的面积是ABC面积的2倍,所以ABPM=ABCF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n(m+2),所以n=m+4,由于P(m,n)在抛物线y=x21x+9上,联立方程从而可求出m、n的值详解:(I)y=x21x+9=(x2)2,顶点坐标为(2,0) 联立,
27、解得:或; (II)由题意可知:新抛物线的顶点坐标为(2t,1),设直线AC的解析式为y=kx+b 将A(1,4),C(2,0)代入y=kx+b中, 解得:, 直线AC的解析式为y=2x+1 当点E在直线AC上时,2(2t)+1=1,解得:t= 当点E在直线AD上时,(2t)+2=1,解得:t=5,当点E在DAC内时,t5; (III)如图,直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),OD=OF=2 FOD=90,OFD=ODF=45 OC=OF=2,FOC=90,CF=2,
28、OFC=OCF=45, DFC=DFO+OFC=45+45=90,CFAB PAB的面积是ABC面积的2倍,ABPM=ABCF, PM=2CF=1 PNx轴,FDO=45,DGN=45,PGM=45在RtPGM中,sinPGM=, PG=3 点G在直线y=x+2上,P(m,n), G(m,m+2) 2m1,点P在点G的上方,PG=n(m+2),n=m+4 P(m,n)在抛物线y=x21x+9上,m21m+9=n,m21m+9=m+4,解得:m= 2m1,m=不合题意,舍去,m=,n=m+4= 点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生
29、综合运用所学知识24、ADE是等腰三角形;证明过程见解析.【解析】试题分析:当四边形EDDF为菱形时,ADE是等腰三角形,ADEEFC先证明CD=DA=DB,得到DAC=DCA,由ACAC即可得到DAE=DEA由此即可判断DAE的形状由EFAB推出CEF=EAD,EFC=ADC=ADE,再根据AD=DE=EF即可证明试题解析:当四边形EDDF为菱形时,ADE是等腰三角形,ADEEFC理由:BCA是直角三角形,ACB=90,AD=DB,CD=DA=DB,DAC=DCA,ACAC,DAE=A,DEA=DCA,DAE=DEA,DA=DE,ADE是等腰三角形四边形DEFD是菱形,EF=DE=DA,EF
30、DD,CEF=DAE,EFC=CDA,CDCD,ADE=ADC=EFC,在ADE和EFC中,ADEEFC考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质25、(1)12(2)y=(0x5)(3)或【解析】试题分析:(1)过点A作AHBC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH的长,BC的长,再利用三角形的面积公式即可得;(2)先证明BPDBAC,得到=,再根据 ,代入相关的量即可得;(3)分情况进行讨论即可得.试题解析:(1)过点A作AHBC于点H ,则AHB=90,cosB= ,cosB=,AB=5,BH=4,AH=3,AB=AC,BC=2BH=8,SABC=8
31、3=12(2)PB=PD,B=PDB,AB=AC,B=C,C=PDB,BPDBAC, ,即,解得=, , ,解得y=(0x5); (3)APD90,过C作CEAB交BA延长线于E,可得cosCAE= ,当ADP=90时,cosAPD=cosCAE=,即 ,解得x=; 当PAD=90时, ,解得x=,综上所述,PB=或.【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.26、(1);(2)1【解析】(1)根据二次根式的混合运算法则即可;(2)根据特殊角的三角函数值即可计算【详解】解:(1)原式=;(2)原式【点睛】本
32、题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则27、(1)90;(1)AE1+EB1AC1,证明见解析【解析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EBEC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答【详解】解:(1)点D是BC边的中点,DEBC,DE是线段BC的垂直平分线,EBEC,ECBB45,AECECB+B90;(1)AE1+EB1AC1AEC90,AE1+EC1AC1,EBEC,AE1+EB1AC1【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键