《浙江省湖州市南浔区重点名校2022-2023学年中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省湖州市南浔区重点名校2022-2023学年中考四模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1一元一次不等式2(1+x)1+3x的解集在数轴上表示为()ABCD2已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )Ay=-x2-4x-1By=-x2-4x-2Cy=-x2+2x-1Dy=-x2+2x-23如图在ABC中,A
2、CBC,过点C作CDAB,垂足为点D,过D作DEBC交AC于点E,若BD6,AE5,则sinEDC的值为()ABCD4如图,直线mn,在某平面直角坐标系中,x轴m,y轴n,点A的坐标为(4,2),点B的坐标为(2,4),则坐标原点为( )AO1BO2CO3DO45某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图这5个正确答题数所组成的一组数据的中位数和众数分别是( )A10,15B13,15C13,20D15,156如图,点C是直线AB,DE之间的一点,ACD=90,下列条件能使得ABDE的是()A+=180B=90C=3D+=907下列图形中,哪一个是圆锥的侧面展开图?ABCD8若一
3、元二次方程x22x+m=0有两个不相同的实数根,则实数m的取值范围是()Am1Bm1Cm1Dm19花园甜瓜是乐陵的特色时令水果甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为()kgA180B200C240D30010世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司将0.056用科学记数法表示为( )A5.6101B5.6102C5.6103D0.56101二、填空题(本大题
4、共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是_12如图,抛物线交轴于,两点,交轴于点,点关于抛物线的对称轴的对称点为,点,分别在轴和轴上,则四边形周长的最小值为_13若正多边形的一个内角等于140,则这个正多边形的边数是_. 149的算术平方根是 15已知,如图,正方形ABCD的边长是8,M在DC上,且DM2,N是AC边上的一动点,则DN+MN的最小值是_16如图是某商品的标志图案,AC与BD是O的两条直径,首尾顺次连接点A、B、C
5、、D,得到四边形ABCD,若AC=10cm,BAC=36,则图中阴影部分的面积为_三、解答题(共8题,共72分)17(8分)如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.18(8分)已知:在O中,弦AB=AC,AD是O的直径求证:BD=CD19(8分)平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+3与y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B
6、,对称轴是直线x=1,顶点为P(1)求这条抛物线的表达式和顶点P的坐标; (2)抛物线的对称轴与x轴相交于点M,求PMC的正切值;(3)点Q在y轴上,且BCQ与CMP相似,求点Q的坐标20(8分)在“双十二”期间,两个超市开展促销活动,活动方式如下:超市:购物金额打9折后,若超过2000元再优惠300元;超市:购物金额打8折某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少(直接写
7、出方案)21(8分)如图,一次函数y1kxb(k0)和反比例函数y2(m0)的图象交于点A(1,6),B(a,2)求一次函数与反比例函数的解析式;根据图象直接写出y1y2 时,x的取值范围22(10分)如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A处时,有ABAB(1)求A到BD的距离;(2)求A到地面的距离23(12分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一
8、个动点求此抛物线的解析式;求C、D两点坐标及BCD的面积;若点P在x轴上方的抛物线上,满足SPCD=SBCD,求点P的坐标.24在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】按照解一元一次不等式的步骤求解即可.【详解】去括号,得2+2x1+3x;移项合并同类项,得x1,所以选B.【点睛】数形结合思想是初中常用的方法之一.2、D【解析】把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x的图象上,即顶点的横纵坐标互为相反数,而平移时,
9、顶点的纵坐标不变,即可求得函数解析式【详解】解:y=x14x5=(x+1)11,顶点坐标是(1,1)由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x的图象上,即顶点的横纵坐标互为相反数左、右平移时,顶点的纵坐标不变,平移后的顶点坐标为(1,1),函数解析式是:y=(x1)11=x1+1x1,即:y=x1+1x1故选D【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变同时考查了二次函数的性质,正比例函数y=x的图象上点的坐标特征3、A【解析】由等腰三角形三线合一的性质得出AD=DB=6,BDC=ADC=90
10、,由AE=5,DEBC知AC=2AE=10,EDC=BCD,再根据正弦函数的概念求解可得【详解】ABC中,ACBC,过点C作CDAB,ADDB6,BDCADC90,AE5,DEBC,AC2AE10,EDCBCD,sinEDCsinBCD,故选:A【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点4、A【解析】试题分析:因为A点坐标为(4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,4),所以,原点在点B的左边,且在点B的上边4个单位处如下图,O1符合考点:平面直角坐标系5、D【解析】将五个答题数
11、,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.6、B【解析】延长AC交DE于点F,根据所给条件如果能推出=1,则能使得ABDE,否则不能使得ABDE;【详解】延长AC交DE于点F.A. +=180,=1+90,=90-1,即1,不能使得ABDE;B. =90,=1+90,=1,能使得ABDE;C.=3,=1+90,3=90+1,即1,不能使得ABDE;D.+=90,=1+90,=-1,即1,不能使得ABDE;故选B.【点
12、睛】本题考查了平行线的判定方法:两同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.7、B【解析】根据圆锥的侧面展开图的特点作答【详解】A选项:是长方体展开图B选项:是圆锥展开图.C选项:是棱锥展开图.D选项:是正方体展开图.故选B.【点睛】考查了几何体的展开图,注意圆锥的侧面展开图是扇形8、D【解析】分析:根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围详解:方程有两个不相同的实数根, 解得:m1故选D点睛:本题考查了根的判别式,牢记“当0时,方
13、程有两个不相等的实数根”是解题的关键9、B【解析】根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.【详解】解:设小李所进甜瓜的数量为,根据题意得:,解得:,经检验是原方程的解答:小李所进甜瓜的数量为200kg故选:B【点睛】本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.10、B【解析】0.056用科学记数法表示为:0.056=,故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|dR+r,求得圆D与圆O的半径代入计算即可
14、.【详解】连接OA、OD,过O点作ONAE,OMAF.AN=AE=1,AM=AF=2,MD=AD-AM=3四边形ABCD是矩形BAD=ANO=AMO=90,四边形OMAN是矩形OM=AN=1OA=,OD=以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交【点睛】本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.12、【解析】根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D(1,4)、作点E关于x轴的对称点E(2,3),从而得到四边形EDFG的周长DEDFFGGEDEDFFGGE,当点D、F、G、E四点共线时,周长最短,据此根据勾
15、股定理可得答案.【详解】如图,在yx22x3中,当x0时,y3,即点C(0,3),yx22x3(x1)24,对称轴为x1,顶点D(1,4),则点C关于对称轴的对称点E的坐标为(2,3),作点D关于y轴的对称点D(1,4),作点E关于x轴的对称点E(2,3),连结D、E,DE与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,四边形EDFG的周长DEDFFGGEDEDFFGGEDEDE 四边形EDFG周长的最小值是.【点睛】本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案.13、1【解析】试题分析:此题主要考查了多边形的外角与内角
16、,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数首先根据求出外角度数,再利用外角和定理求出边数正多边形的一个内角是140,它的外角是:180-140=40,36040=1故答案为1考点:多边形内角与外角14、1【解析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】,9算术平方根为1故答案为1【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.15、1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解解答:解:如图,连接BM,点B和点D关于直线AC对称,NB=ND,则BM就是DN+
17、MN的最小值,正方形ABCD的边长是8,DM=2,CM=6,BM=1,DN+MN的最小值是1故答案为1点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用16、10cm1【解析】根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,根据等腰三角形的性质得到BAC=ABO=36,由圆周角定理得到AOD=71,于是得到结论【详解】解:AC与BD是O的两条直径,ABC=ADC=DAB=BCD=90,四边形ABCD是矩形,SABO=SCDO =SAOD=SBOD,图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,OA=OB,BAC=
18、ABO=36,AOD=71,图中阴影部分的面积=1=10,故答案为10cm1点睛:本题考查了扇形的面积,矩形的判定和性质,圆周角定理的推论,三角形外角的性质,熟练掌握扇形的面积公式是解题的关键三、解答题(共8题,共72分)17、(1);(2)P(0,6)【解析】试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PCAC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.先求得平移后直线的解析式,再求得平移后直线与反比例函数的图象的交点坐标,最
19、后求直线AC的解析式,即可求得点P的坐标.试题解析:令一次函数中,则, 解得:,即点A的坐标为(-4,2) 点A(-4,2)在反比例函数的图象上,k=-42=-8, 反比例函数的表达式为 连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PCAC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值. 设平移后直线于x轴交于点F,则F(6,0)设平移后的直线解析式为,将F(6,0)代入得:b=3直线CF解析式: 令3=,解得:, C(-2,4) A、C两点坐标分别为A(-4,2)、C(-2,4)直线AC的表达式为, 此时,P点坐
20、标为P(0,6).点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.18、证明见解析【解析】根据AB=AC,得到,于是得到ADB=ADC,根据AD是O的直径,得到B=C=90,根据三角形的内角和定理得到BAD=DAC,于是得到结论【详解】证明:AB=AC,ADB=ADC,AD是O的直径,B=C=90,BAD=DAC,BD=CD【点睛】本题考查了圆周角定理,熟记圆周角定理是解题的关键19、(1)(1,4)(2)(0,)或(0,-1)【解析】试题分析:(1)先求得点C的坐标,再由OA=OC
21、得到点A的坐标,再根据抛物线的对称性得到点B的坐标,利用待定系数法求得解析式后再进行配方即可得到顶点坐标;(2)由OC/PM,可得PMC=MCO,求tanMCO即可 ;(3)分情况进行讨论即可得.试题解析:(1)当x=0时,抛物线y=ax2+bx+3=3,所以点C坐标为(0,3),OC=3,OA=OC,OA=3,A(3,0),A、B关于x=1对称,B(-1,0),A、B在抛物线y=ax2+bx+3上, , ,抛物线解析式为:y=-x2+2x+3=-(x-1)2+4,顶点P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),OC=3,OM=1,OC/PM,PMC=MCO,
22、tanPMC=tanMCO= = ;(3)Q在C点的下方,BCQ=CMP,CM=,PM=4,BC=,或 ,CQ=或4,Q1(0,),Q2(0,-1).20、(1)这种篮球的标价为每个50元;(2)见解析【解析】(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.【详解】(1)设这种篮球的标价为每个x元,依题意,得,解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买1
23、00个篮球,最少的费用为3850元,单独在A超市一次买100个,则需要费用:100500.9-300=4200元,在A超市分两次购买,每次各买50个,则需要费用:2(50500.9-300)=3900元,单独在B超市购买:100500.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45500.9-300=1725元,两次购买,每次各买45个,需要17252=3450元,其余10个在B超市购买,需要10500.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:在A超市分两次购买,每次购买45
24、个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.21、(1)y12x4,y2;(2)x1或0x1【解析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可【详解】解:(1)把点A(1,6)代入反比例函数(m0)得:m=16=6,将B(a,2)代入得:,a=1,B(1,2),将A(1,6),
25、B(1,2)代入一次函数y1=kx+b得:,;(2)由函数图象可得:x1或0x1【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键22、(1)A到BD的距离是1.2m;(2)A到地面的距离是1m【解析】(1)如图2,作AFBD,垂足为F根据同角的余角相等证得2=3;再利用AAS证明ACBBFA,根据全等三角形的性质即可得AF=BC,根据BC=BDCD求得BC的长,即可得AF的长,从而求得A到BD的距离;(2)作AHDE,垂足为H,可证得AH=FD,根据AH=BDBF求得AH的长,从而求得A到地面的距离.【详解】(1)如图2,作AFBD,垂足为FACBD,ACB=A
26、FB=90;在RtAFB中,1+3=90; 又ABAB,1+2=90,2=3;在ACB和BFA中,ACBBFA(AAS);AF=BC,ACDE且CDAC,AEDE,CD=AE=1.8;BC=BDCD=31.8=1.2,AF=1.2,即A到BD的距离是1.2m (2)由(1)知:ACBBFA,BF=AC=2m,作AHDE,垂足为HAFDE,AH=FD,AH=BDBF=32=1,即A到地面的距离是1m【点睛】本题考查了全等三角形的判定与性质的应用,作出辅助线,证明ACBBFA是解决问题的关键.23、 (1)y=(x1)2+4;(2)C(1,0),D(3,0);6;(3)P(1+,),或P(1,)【
27、解析】(1)设抛物线顶点式解析式y=a(x-1)2+4,然后把点B的坐标代入求出a的值,即可得解;(2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;(3)先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标【详解】解:(1)、抛物线的顶点为A(1,4), 设抛物线的解析式y=a(x1)2+4,把点B(0,3)代入得,a+4=3, 解得a=1, 抛物线的解析式为y=(x1)2+4;(2)由(1)知,抛物线的解析式为y=(x1)2+4; 令y=0,则0=(x1)2+4, x=1或x=3, C(1,0),D(3,0); CD=4,SBCD=CD|y
28、B|=43=6;(3)由(2)知,SBCD=CD|yB|=43=6;CD=4, SPCD=SBCD,SPCD=CD|yP|=4|yP|=3, |yP|= , 点P在x轴上方的抛物线上,yP0, yP= , 抛物线的解析式为y=(x1)2+4; =(x1)2+4,x=1, P(1+ , ),或P(1,)【点睛】本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.24、证明见解析.【解析】试题分析:作于点F,然后证明 ,从而求出所所以BM与CN的长度相等试题解析:在矩形ABCD中,AD=2AB,E是AD的中点,作EFBC于点F,则有AB=AE=EF=FC, AEM=FEN,在RtAME和RtFNE中,E为AB的中点,AB=CF,AEM=FEN,AE=EF,MAE=NFE,RtAMERtFNE,AM=FN,MB=CN.