《浙江省杭州市重点中学2023年高三第四次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省杭州市重点中学2023年高三第四次模拟考试数学试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为( )ABCD2已知数列满足,且,则的值是( )ABC4D3已知函数,则的极大值点为( )ABCD4如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,则异面直线与所成角的余弦值为( )ABCD5设是虚数单位,若复数,则( )ABCD6阿基米德(公元前287年公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表
3、面积为,则该圆柱的内切球体积为( )ABCD7已知椭圆:的左,右焦点分别为,过的直线交椭圆于,两点,若,且的三边长,成等差数列,则的离心率为( )ABCD8在平面直角坐标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最小正角为,则等于( )ABCD9如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,则的最大值为( )ABC2D10如图是一个几何体的三视图,则这个几何体的体积为( )ABCD11设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是( )A是偶函数B是奇函数C是奇函数D是奇函数12如图,中,点D在BC上,将沿AD旋转得到三棱锥,分别记,与平面
4、ADC所成角为,则,的大小关系是( )ABC,两种情况都存在D存在某一位置使得二、填空题:本题共4小题,每小题5分,共20分。13已知,则展开式的系数为_14已知数列的各项均为正数,记为数列的前项和,若,则_.15设实数x,y满足,则点表示的区域面积为_.16某种圆柱形的如罐的容积为个立方单位,当它的底面半径和高的比值为_.时,可使得所用材料最省.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列满足(),数列的前项和,(),且,(1)求数列的通项公式:(2)求数列的通项公式(3)设,记是数列的前项和,求正整数,使得对于任意的均有18(12分)已知函数的最大值
5、为,其中.(1)求实数的值;(2)若求证:.19(12分)设函数(1)当时,求不等式的解集;(2)若对任意都有,求实数的取值范围20(12分)已知椭圆的离心率为,且过点,点在第一象限,为左顶点,为下顶点,交轴于点,交轴于点.(1)求椭圆的标准方程;(2)若,求点的坐标.21(12分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,()若,求的值;()证明:当取最小值时,与共线22(10分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.(2)若椭
6、圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】三个单位的人数可能为2,2,1或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决.【详解】由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有种,若为第一种情况,且甲、乙两人在同一个单位,共有种情况;若为第二种情况,且甲、乙两人在同一个单位,共有种,故甲、乙两人在同一个单位的概率为,故甲、乙两人不在同一个单位的概率为.故选:D.【点睛】本题考查古典
7、概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.2、B【解析】 由,可得,所以数列是公比为的等比数列, 所以,则, 则,故选B.点睛:本题考查了等比数列的概念,等比数列的通项公式及等比数列的性质的应用,试题有一定的技巧,属于中档试题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,等比数列的性质和在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.3、A【解析】求出函数的导函数,令导数为零,根据函数单调性,求得极大值点即可.【详解】因为,故可
8、得,令,因为,故可得或,则在区间单调递增,在单调递减,在单调递增,故的极大值点为.故选:A.【点睛】本题考查利用导数求函数的极值点,属基础题.4、B【解析】建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.5、A【解析】结合复数的除法运算和模长公式求解即可【详解】复数,则,故选:A.【点睛】本题考查复数的除法、模长、平方运算,属于基础题6、D【解析】设圆柱的底面半径为,则其母线长为
9、,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.7、C【解析】根据等差数列的性质设出,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【详解】由已知,成等差数列,设,.由于,据勾股定理有,即,化简得;由椭圆定
10、义知的周长为,有,所以,所以;在直角中,由勾股定理,离心率.故选:C【点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.8、A【解析】设直线直线与轴正半轴所成的最小正角为,由任意角的三角函数的定义可以求得的值,依题有,则,利用诱导公式即可得到答案.【详解】如图,设直线直线与轴正半轴所成的最小正角为因为点在角的终边上,所以依题有,则,所以,故选:A【点睛】本题考查三角函数的定义及诱导公式,属于基础题.9、C【解析】建立坐标系,写出相应的点坐标,得到的表达式,进而得到最大值.【详解】以D点为原点,BC所在直线为x轴,AD所在直线为y轴,建立坐标系,设内切圆的半径
11、为1,以(0,1)为圆心,1为半径的圆;根据三角形面积公式得到,可得到内切圆的半径为 可得到点的坐标为: 故得到 故得到 , 故最大值为:2.故答案为C.【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.10、A【解析】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1再由球与圆柱体积公式求解【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球
12、,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1则几何体的体积为故选:【点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平11、C【解析】根据函数奇偶性的性质即可得到结论【详解】解:是奇函数,是偶函数,故函数是奇函数,故错误,为偶函数,故错误,是奇函数,故正确为偶函数,故错误,故选:【点睛】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键12、A【解析】根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案【详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,
13、设,则有,可得,;,;,综上可得,故选:【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先根据定积分求出的值,再用二项展开式公式即可求解.【详解】因为所以的通项公式为当时,当时,故展开式中的系数为故答案为:【点睛】此题考查定积分公式,二项展开式公式等知识点,属于简单题目.14、63【解析】对进行化简,可得,再根据等比数列前项和公式进行求解即可【详解】由数列为首项为,公比的等比数列,所以63【点睛】本题考查等比数列基本量的求法,当处理复杂因式时,常用基本方法为:因式分解,
14、约分。但解题本质还是围绕等差和等比的基本性质15、【解析】先画出满足条件的平面区域,求出交点坐标,利用定积分即可求解.【详解】画出实数x,y满足表示的平面区域,如图(阴影部分):则阴影部分的面积,故答案为:【点睛】本题考查了定积分求曲边梯形的面积,考查了微积分基本定理,属于基础题.16、【解析】设圆柱的高为,底面半径为,根据容积为个立方单位可得,再列出该圆柱的表面积,利用导数求出最值,从而进一步得到圆柱的底面半径和高的比值【详解】设圆柱的高为,底面半径为.该圆柱形的如罐的容积为个立方单位,即.该圆柱形的表面积为.令,则.令,得;令,得.在上单调递减,在上单调递增.当时,取得最小值,即材料最省,
15、此时.故答案为:.【点睛】本题考查函数的应用,解答本题的关键是写出表面积的表示式,再利用导数求函数的最值,属中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)()(2),(3)【解析】(1)依题意先求出,然后根据 ,求出的通项公式为,再检验的情况即可;(2)由递推公式,得, 结合数列性质可得数列相邻项之间的关系,从而可求出结果;(3)通过(1)、(2)可得,所以,记,利用函数单调性可求的范围,从而列不等式可解.【详解】解:(1)因为数列满足();当时,检验当时, 成立.所以,数列的通项公式为()(2)由,得, 所以, 由,得,即, 所以, 由,得,因为,所以,上式
16、同除以,得,即,所以,数列时首项为1,公差为1的等差数列,故,(3)因为所以,记,当时,所以,当时,数列为单调递减,当时,从而,当时,因此,所以,对任意的,综上,【点睛】本题考在数列通项公式的求法、等差数列的定义及通项公式、数列的单调性,考查考生的逻辑思维能力、运算求解能力以及化归与转化思想、分类讨论思想.18、(1)1;(2)证明见解析.【解析】(1)利用零点分段法将表示为分段函数的形式,由此求得的最大值,进而求得的值.(2)利用(1)的结论,将转化为,求得的取值范围,利用换元法,结合函数的单调性,证得,由此证得不等式成立.【详解】(1)当时,取得最大值.(2)证明:由(1)得,当且仅当时等
17、号成立, 令,则在上单调递减当时,.【点睛】本小题主要考查含有绝对值的函数的最值的求法,考查利用基本不等式进行证明,属于中档题.19、(1)(2)【解析】利用零点分区间法,去掉绝对值符号分组讨论求并集,对恒成立,则,由三角不等式,得求解【详解】解:当时,不等式即为,可得或或,解得或或,则原不等式的解集为 若对任意、都有,即为, 由,当取得等号,则,由,可得,则的取值范围是【点睛】本题考查含有两个绝对值符号的不等式解法及利用三角不等式解恒成立问题. (1)含有两个绝对值符号的不等式常用解法可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解(2)利用三角不等式把不
18、等式恒成立问题转化为函数最值问题.20、(1);(2)【解析】(1)由题意得,求出,进而可得到椭圆的方程;(2)由(1)知点,坐标,设直线的方程为,易知,可得点的坐标为,联立方程,得到关于的一元二次方程,结合根与系数关系,可用表示的坐标,进而由三点共线,即,可用表示的坐标,再结合,可建立方程,从而求出的值,即可求得点的坐标.【详解】(1)由题意得,解得,所以椭圆的方程为.(2)由(1)知点,由题意可设直线的斜率为,则,所以直线的方程为,则点的坐标为,联立方程,消去得:.设,则,所以,所以,所以.设点的坐标为,因为点三点共线,所以,即,所以,所以.因为,所以,即,所以,解得,又,所以符合题意,计
19、算可得,故点的坐标为.【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查平行线的性质,考查学生的计算求解能力,属于难题.21、()()证明见解析【解析】由与,得,的方程为设,则,由得 ()由,得, , 由、三式,消去,并求得,故(),当且仅当或时,取最小值,此时,故与共线22、(1);(2)不存在,理由见解析【解析】(1)写出,根据,斜率乘积为-1,建立等量关系求解离心率;(2)写出直线AB的方程,根据韦达定理求出点B的坐标,计算出弦长,根据垂直关系同理可得,利用等式即可得解.【详解】(1)由题可得,过点作直线交椭圆于点,且,直线交轴于点.点为椭圆的右顶点时,的坐标为,即,化简得:,即,解得或(舍去),所以;(2)椭圆的方程为,由(1)可得,联立得:,设B的横坐标,根据韦达定理,即,所以,同理可得若存在使得成立,则,化简得:,此方程无解,所以不存在使得成立.【点睛】此题考查求椭圆离心率,根据直线与椭圆的位置关系解决弦长问题,关键在于熟练掌握解析几何常用方法,尤其是韦达定理在解决解析几何问题中的应用.