《浙江省台州温岭市第三中学2023年中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省台州温岭市第三中学2023年中考押题数学预测卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:AQDP;OAEOPA;当正方形的边长为3,BP1时,cosDFO=,其中正确结论的个数是( )A0B1C2D32如图是一个几何体的三视图,则
2、这个几何体是( )ABCD3下列计算正确的是()Ax2x3x6B(m+3)2m2+9Ca10a5a5D(xy2)3xy64下列计算正确的是( )A3a26a2=3B(2a)(a)=2a2C10a102a2=5a5D(a3)2=a65某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下 成绩人数(频数)百分比(频率)050.2105150.42050.1根据表中已有的信息,下列结论正确的是()A共有40名同学参加知识竞赛B抽到的同学参加知识竞赛的平均成绩为10分C已知该校共有800名学生,若都参加竞赛
3、,得0分的估计有100人D抽到同学参加知识竞赛成绩的中位数为15分6已知一元二次方程 的两个实数根分别是 x1 、 x2 则 x12 x2 + x1 x22 的值为( )A-6B- 3C3D67如图,直线ab,ABC的顶点B在直线a上,两边分别交b于A,C两点,若ABC=90,1=40,则2的度数为()A30B40C50D608如图:A、B、C、D四点在一条直线上,若ABCD,下列各式表示线段AC错误的是( )AACADCDBACAB+BCCACBDABDACADAB9在下列实数中,3,0,2,1中,绝对值最小的数是()A3B0CD110下列计算错误的是()Aaa=a2B2a+a=3aC(a3
4、)2=a5Da3a1=a4二、填空题(本大题共6个小题,每小题3分,共18分)11如图,数轴上点A所表示的实数是_12方程1的解是_.13如图,在四边形ABCD中,AC、BD相交于点E,若,则_14在平面直角坐标系中,点A1,A2,A3和B1,B2,B3分别在直线y=和x轴上,OA1B1,B1A2B2,B2A3B3都是等腰直角三角形则A3的坐标为_.15若分式的值为正,则实数的取值范围是_.16科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近其中2540000用科学记数法表示为_三、解答题(共8题,共72分)17(8分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面
5、的夹角是22时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上)求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数)18(8分)解方程:19(8分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元物价部门规定其销售单价不高于每千克60元,不低于每千克30元经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时 ,y=80;x=50时,y=1在销售过程中,每天还要支付其他费用450元求出y与x的函数关系式,并写出自变量
6、x的取值范围求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式当销售单价为多少元时,该公司日获利最大?最大获利是多少元?20(8分)如图,儿童游乐场有一项射击游戏从O处发射小球,将球投入正方形篮筐DABC正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3)小球按照抛物线yx2+bx+c 飞行小球落地点P 坐标(n,0)(1)点C坐标为 ;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)验证:随着n的变化,抛物线的顶点在函数yx2的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围21(8分)定安县定安中学初中部三名学生
7、竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图ABC笔试859590口试 8085(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为 度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选(从A、B、C、选择一个填空)22(10分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量
8、的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?23(12分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF. (1)求证:四边形AECF为菱形;(2)若AB4,BC8,求菱形AECF的周长.24如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(1,0)(1)求此抛物线的解析式;(2)如图2,点D为抛
9、物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PEy轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当BQE+DEQ=90时,求此时点P的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】由四边形ABCD是正方形,得到AD=BC, 根据全等三角形的性质得到P=Q,根据余角的性质得到AQDP;故正确;根据勾股定理求出直接用余弦可求出【详解】详解:四边形ABCD是正方形,AD=BC, BP=CQ,AP=
10、BQ,在DAP与ABQ中, DAPABQ, P=Q, AQDP;故正确;无法证明,故错误BP=1,AB=3, 故正确,故选C【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高2、B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B考点:由三视图判断几何体3、C【解析】根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案.【详解】x2x3x5,故选项A不合题意;(m+3)2m2+6m+9,故选项B不合题意;a10a5a5,故选项C符合题意;(xy2)
11、3x3y6,故选项D不合题意故选:C【点睛】本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.4、B【解析】根据整式的运算法则分别计算可得出结论.【详解】选项A,由合并同类项法则可得3a26a2=3a2,不正确;选项B,单项式乘单项式的运算可得(2a)(a)=2a2,正确;选项C,根据整式的除法可得10a102a2=5a8,不正确;选项D,根据幂的乘方可得(a3)2=a6,不正确故答案选B考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式5、B【解析】根据频数频率=总数可求出参加人数,根据分别求出5分、
12、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.【详解】50.1=50(名),有50名同学参加知识竞赛,故选项A错误;成绩5分、15分、0分的同学分别有:500.2=10(名),500.4=20(名),50105205=10(名)抽到的同学参加知识竞赛的平均成绩为:=10,故选项B正确;0分同学10人,其频率为0.2,800名学生,得0分的估计有8000.2=160(人),故选项C错误;第25、26名同学的成绩为10分、15分,抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误故选:B【点睛】本题考查利用频
13、率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.6、B【解析】根据根与系数的关系得到x1+x2=1,x1x2=1,再把x12x2+x1x22变形为x1x2(x1+x2),然后利用整体代入的方法计算即可【详解】根据题意得:x1+x2=1,x1x2=1,所以原式=x1x2(x1+x2)=11=1故选B【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程两个为x1,x2,则x1+x2,x1x27、C【解析】依据平行线的性质,可得BAC的度数,再根据三角形内和定理,即可得到2的度数【详解】解:ab,1BAC40,又ABC90,2904050,故选C【点睛】本
14、题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等8、C【解析】根据线段上的等量关系逐一判断即可.【详解】A、AD-CD=AC,此选项表示正确;B、AB+BC=AC,此选项表示正确;C、AB=CD,BD-AB=BD-CD,此选项表示不正确;D、AB=CD,AD-AB=AD-CD=AC,此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.9、B【解析】|3|=3,|=,|0|=0,|2|=2,|1|=1,3210,绝对值最小的数是0,故选:B10、C【解析】解:A、aa=a2,正确,不合题意;B、2a+a=3a,正确
15、,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3a1=a4,正确,不合题意;故选C【点睛】本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】A点到-1的距离等于直角三角形斜边的长度,应用勾股定理求解出直角三角形斜边长度即可.【详解】解:直角三角形斜边长度为,则A点到-1的距离等于,则A点所表示的数为:1+【点睛】本题考查了利用勾股定理求解数轴上点所表示的数.12、x4【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3+2xx1,解
16、得:x4,经检验x4是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13、【解析】利用相似三角形的性质即可求解;【详解】解: ABCD,AEBCED, , ,故答案为 【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质14、A3()【解析】设直线y=与x轴的交点为G,过点A1,A2,A3分别作x轴的垂线,垂足分别为D、E、F,由条件可求得,再根据等腰三角形可分别求得A1D、A2E、A3F,可得到A1,A2,A3的坐标.【详解】设直线y=与x轴的交点为G,令y=0可解得x=-4,G点坐标为(-4,0),OG=4,如图1,过点A1,A
17、2,A3分别作x轴的垂线,垂足分别为D、E、F,A1B1O为等腰直角三角形,A1D=OD,又点A1在直线y=x+上,=,即=,解得A1D=1=()0,A1(1,1),OB1=2,同理可得=,即=,解得A2E=()1,则OE=OB1+B1E=,A2(,),OB2=5,同理可求得A3F=()2,则OF=5+=,A3(,);故答案为(,)【点睛】本题主要考查等腰三角形的性质和直线上点的坐标特点,根据题意找到点的坐标的变化规律是解题的关键,注意观察数据的变化15、x0【解析】【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.【详解】分式的值为正,x与x2+2的符号同号,x2+20,x0,故答案
18、为x0.【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.16、2.541【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】2540000的小数点向左移动6位得到2.54,所以,2540000用科学记数法可表示为:2.541,故答案为2.541【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值三、解答题(共8题,共72分)17、(1)2m(2)27m【解析】(1)首先构造直角三角形AEM,利用,求出即可(2)利
19、用RtAME中,求出AE即可【详解】解:(1)过点E作EMAB,垂足为M设AB为x在RtABF中,AFB=45,BF=AB=x,BC=BFFC=x1在RtAEM中,AEM=22,AM=ABBM=ABCE=x2,又,解得:x2教学楼的高2m(2)由(1)可得ME=BC=x+12+1=3在RtAME中,AE=MEcos22A、E之间的距离约为27m18、x=,x=2【解析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】,则2x(x+1)=3(1x),2x2+5x3=0,(2x1)(x+3)=0,解得:x1=,x2=3,检验:当x=,x=2时,2(x+1)(1x)均不等于0,故x=,
20、x=2都是原方程的解【点睛】本题考查解分式方程的能力(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化19、(1)y=2x+200(30x60)(2)w=2(x65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】(1)设出一次函数解析式,把相应数值代入即可(2)根据利润计算公式列式即可;(3)进行配方求值即可【详解】(1)设y=kx+b,根据题意得解得:y=2x+200(30x60)(2)W=(x30)(2x+200)450=2x2+260x6450=2(x65)2 +20
21、00)(3)W =2(x65)2 +200030x60x=60时,w有最大值为1950元当销售单价为60元时,该公司日获利最大,为1950元 考点:二次函数的应用20、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)n 【解析】(1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;(3)将点N的坐标代入y=x2,看是否符合解析式即可;(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y3,当x=3时y2,据此列出关于n的不等
22、式组,解之可得【详解】(1)A(2,2),B(3,2),D(2,3),ADBC1, 则点 C(3,3),故答案为:(3,3);(2)把(0,0)(n,0)代入 yx2+bx+c 得: ,解得:,抛物线解析式为 yx2+nx(x)2+,顶点 N 坐标为(,);(3)由(2)把 x代入 yx2()2 ,抛物线的顶点在函数 yx2的图象上运动;(4)根据题意,得:当 x2 时 y3,当 x3 时 y2, 即,解得:n【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力21、(1)90;(2)144度;(3)105,120,75
23、;(4)B【解析】(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;(2)用360乘以B对应的百分比可得答案;(3)用总人数乘以A、B、C三人对应的百分比可得答案;(4)根据加权平均数的定义计算可得【详解】解:(1)由条形图知,A演讲得分为90分,补全图形如下:故答案为90;(2)扇图中B同学对应的扇形圆心角为36040%144,故答案为144;(3)A同学得票数为30035%105,B同学得票数为30040%120,C同学得票数为30025%75,故答案为105、120、75;(4)A的最终得分为92.5(分),B的最终得分为98(分),C的最终得分为84(分),B最终当
24、选,故答案为B【点睛】本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据22、(1)补图见解析;(2)27;(3)1800名【解析】(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;(2)用360乘以对应的比例即可求解;(3)用总人数乘以对应的百分比即可求解【详解】(1)抽取的总人数是:1025%=40(人),在B类的人数是:4030%=12(人).;(2)扇形统计图扇形D的圆心角的度数是:360=27;(3)能在1.5小时内完成家庭作业的人数是:2000(25%+30%+
25、35%)=1800(人).考点:条形统计图、扇形统计图23、(1)见解析;(2)1【解析】(1)根据ASA推出:AEOCFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EFAC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8x在RtABF中,由勾股定理求出x的值,即可得到结论【详解】(1)EF是AC的垂直平分线,AO=OC,AOE=COF=90四边形ABCD是矩形,ADBC,EAO=FCO在AEO和CFO中,AEOCFO(ASA);OE=OF又OA=OC,四边形AECF是平行四边形又EFAC,平行四边形AECF是菱形;(2)
26、设AF=xEF是AC的垂直平分线,AF=CF=x,BF=8x在RtABF中,由勾股定理得:AB2+BF2=AF2,42+(8x)2=x2,解得:x=5,AF=5,菱形AECF的周长为1【点睛】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想24、(1)y=x2+2x+3;(2)d=t2+4t3;(3)P(,)【解析】(1)由抛物线y=ax2+bx+3与y轴交于点A,可求得点A的坐标,又OA=OC,可求得点C的坐标,然后分别代入B,C的坐标求出a,b,即可求得二次函数的解析式;(2)首先延长PE交x轴于点H,现将解析
27、式换为顶点解析式求得D(1,4),设直线CD的解析式为y=kx+b,再将点C(3,0)、D(1,4)代入,得y=2x+6,则E(t,2t+6),P(t,t2+2t+3),PH=t2+2t+3,EH=2t+6,再根据d=PHEH即可得答案;(3)首先,作DKOC于点K,作QMx轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ERDK于点R,记QE与DK的交点为N,根据题意在(2)的条件下先证明DQTECH,再根据全等三角形的性质即可得ME=42(2t+6),QM= t1+(3t),即可求得答案【详解】解:(1)当x=0时,y=3,A(0,3)即OA=3,OA=OC,OC=3,C(3,0)
28、,抛物线y=ax2+bx+3经过点B(1,0),C(3,0),解得:,抛物线的解析式为:y=x2+2x+3;(2)如图1,延长PE交x轴于点H,y=x2+2x+3=(x1)2+4,D(1,4),设直线CD的解析式为y=kx+b,将点C(3,0)、D(1,4)代入,得: ,解得:,y=2x+6,E(t,2t+6),P(t,t2+2t+3),PH=t2+2t+3,EH=2t+6,d=PHEH=t2+2t+3(2t+6)=t2+4t3;(3)如图2,作DKOC于点K,作QMx轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ERDK于点R,记QE与DK的交点为N,D(1,4),B(1,0),C(3,0),BK=2,KC=2,DK垂直平分BC,BD=CD,BDK=CDK,BQE=QDE+DEQ,BQE+DEQ=90,QDE+DEQ+DEQ=90,即2CDK+2DEQ=90,CDK+DEQ=45,即RNE=45,ERDK,NER=45,MEQ=MQE=45,QM=ME,DQ=CE,DTQ=EHC、QDT=CEH,DQTECH,DT=EH,QT=CH,ME=42(2t+6),QM=MT+QT=MT+CH=t1+(3t),42(2t+6)=t1+(3t),解得:t=,P(,)【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点.