江西省贵溪市重点中学2022-2023学年中考二模数学试题含解析.doc

上传人:lil****205 文档编号:88306689 上传时间:2023-04-25 格式:DOC 页数:20 大小:693.50KB
返回 下载 相关 举报
江西省贵溪市重点中学2022-2023学年中考二模数学试题含解析.doc_第1页
第1页 / 共20页
江西省贵溪市重点中学2022-2023学年中考二模数学试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《江西省贵溪市重点中学2022-2023学年中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江西省贵溪市重点中学2022-2023学年中考二模数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1计算()1的结果是()ABC2D22下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A1个B2个C3个D4个3一元二次方程x23x+1=0的根的情况()A有两个相等的实数根B有两个不相等的实数根C没有实数根D以上答案都不对4下列命题正确的是()A对角线相等的四边形是平行四边形B对角线相等的四边形是矩形C对角线互相垂直的平行四边形是菱形D对角线互相垂直且相等的四边形是正方形5不等式组的正整数解的个数是()A5B4C3D26如图是二次函数y=ax2+bx+c的图象,有下列结

3、论:ac1;a+b1;4acb2;4a+2b+c1其中正确的个数是()A1个B2个C3个D4个7某市2010年元旦这天的最高气温是8,最低气温是2,则这天的最高气温比最低气温高()A10B10C6D68下列各式中的变形,错误的是()ABCD9如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使DEF与ABC相似,则点F应是G,H,M,N四点中的( )AH或NBG或HCM或NDG或M10下列四个图形中,是中心对称图形但不是轴对称图形的是()ABCD11如图,将ABC绕点C(0,-1)旋转180得到ABC,设点A的坐标为(a,b),则点A的坐标为( )A(-a,-b

4、)B(-a,-b-1)C(-a,-b+1)D(-a,-b-2)12如图,将周长为8的ABC沿BC方向平移1个单位长度得到,则四边形的周长为( )A8B10C12D16二、填空题:(本大题共6个小题,每小题4分,共24分)13将一张长方形纸片折叠成如图所示的形状,则ABC=_14如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30,那么铁塔的高度AB=_米15分解因:=_16在平面直角坐标系中,直线l:y=x1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、正方形AnBnCnCn1,使得点A1、A2、A3、在直线l上,点C1、C2、C

5、3、在y轴正半轴上,则点Bn的坐标是_17如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是_18已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知:在ABC中,AC=BC,D,E,F分别是AB,AC,CB的中点.求证:四边形DECF是菱形.20(6分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目为了了解学生对四种项目的喜欢情况,随机抽取了部分学生

6、进行调查,并将调查结果绘制成如图的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率21(6分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把ADC绕点C逆时针旋转90得ADC,连接ED,抛物线()过E,A两点(

7、1)填空:AOB= ,用m表示点A的坐标:A( , );(2)当抛物线的顶点为A,抛物线与线段AB交于点P,且时,DOE与ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MNy轴,垂足为N:求a,b,m满足的关系式;当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围22(8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时

8、,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23(8分)如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F(1)求证:ABFEDF;(2)若AB=6,BC=8,求AF的长.24(10分)计算:2sin30()0+|1|+()125(10分)如图,已知点D、E为ABC的边BC上两点AD=AE,BD=CE,为了判断B与C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据解:过点A作AHBC,垂足为H在ADE中,AD=AE(已知)AHBC(所作)DH=EH(等腰三角形底边上的高也是底边上

9、的中线)又BD=CE(已知)BD+DH=CE+EH(等式的性质)即:BH= 又 (所作)AH为线段 的垂直平分线AB=AC(线段垂直平分线上的点到线段两个端点的距离相等) (等边对等角)26(12分)解方程:27(12分)如图,一次函数ykxb的图象与反比例函数y(x0)的图象交于点P(n,2),与x轴交于点A(4,0),与y轴交于点C,PBx轴于点B,点A与点B关于y轴对称(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由参考答案一、选择题(本大题共12个

10、小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据负整数指数幂与正整数指数幂互为倒数,可得答案【详解】解: ,故选D【点睛】本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数2、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形故选:C【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么

11、这个图形就叫做中心对称图形3、B【解析】首先确定a=1,b=-3,c=1,然后求出=b2-4ac的值,进而作出判断【详解】a=1,b=-3,c=1,=(-3)2-411=50,一元二次方程x2-3x+1=0两个不相等的实数根;故选B【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数;(3)0方程没有实数根4、C【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可详解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂

12、直且相等的平行四边形是正方形;故选:C点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理5、C【解析】先解不等式组得到-1x3,再找出此范围内的正整数【详解】解不等式1-2x3,得:x-1,解不等式2,得:x3,则不等式组的解集为-1x3,所以不等式组的正整数解有1、2、3这3个,故选C【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.6、C【解析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对

13、所得结论进行判断【详解】解:根据图示知,该函数图象的开口向上,a1;该函数图象交于y轴的负半轴,c1;故正确;对称轴 b1;故正确;根据图示知,二次函数与x轴有两个交点,所以,即,故错误故本选项正确正确的有3项故选C【点睛】本题考查二次函数的图象与系数的关系.二次项系数决定了开口方向,一次项系数和二次项系数共同决定了对称轴的位置,常数项决定了与轴的交点位置7、A【解析】用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.【详解】8-(-2)=8+2=10即这天的最高气温比最低气温高10故选A8、D【解析】根据分式的分子分母都乘以(或除以)同一个不

14、为零的数(整式),分式的值不变,可得答案【详解】A、,故A正确;B、分子、分母同时乘以1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、,故D错误;故选:D【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变9、C【解析】根据两三角形三条边对应成比例,两三角形相似进行解答【详解】设小正方形的边长为1,则ABC的各边分别为3、,只能F是M或N时,其各边是6、2,2与ABC各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键10、D【解析】根据轴对称图形与中心对称图

15、形的概念判断即可【详解】A、是轴对称图形,不是中心对称图形; B、是轴对称图形,不是中心对称图形; C、是轴对称图形,不是中心对称图形; D、不是轴对称图形,是中心对称图形 故选D【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合11、D【解析】设点A的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可【详解】根据题意,点A、A关于点C对称,设点A的坐标是(x,y),则=0,=-1,解得x=-a,y=-b-2,点A的坐标是(-a,-b-2)故选D【点睛】本

16、题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A、A关于点C成中心对称是解题的关键12、B【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案根据题意,将周长为8个单位的ABC沿边BC向右平移1个单位得到DEF,AD=1,BF=BC+CF=BC+1,DF=AC;又AB+BC+AC=8,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1故选C“点睛”本题考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等得到CF=AD,DF=AC是解题

17、的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、73【解析】试题解析:CBD=34,CBE=180-CBD=146,ABC=ABE=CBE=7314、20【解析】在RtABC中,直接利用tanACB=tan30=即可.【详解】在RtABC中,tanACB=tan30=,BC=60,解得AB=20.故答案为20.【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.15、 (x-2y)(x-2y+1)【解析】根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】=x2-4xy+4y2-2y+x=(x-2y)2+

18、x-2y=(x-2y)(x-2y+1)16、(2n1,2n1)【解析】解:y=x-1与x轴交于点A1,A1点坐标(1,0),四边形A1B1C1O是正方形,B1坐标(1,1),C1A2x轴,A2坐标(2,1),四边形A2B2C2C1是正方形,B2坐标(2,3),C2A3x轴,A3坐标(4,3),四边形A3B3C3C2是正方形,B3(4,7),B1(20,21-1),B2(21,22-1),B3(22,23-1),Bn坐标(2n-1,2n-1)故答案为(2n-1,2n-1)17、【解析】试题解析:如图,连接OM交AB于点C,连接OA、OB,由题意知,OMAB,且OC=MC=1,在RTAOC中,OA

19、=2,OC=1,cosAOC=,AC=AOC=60,AB=2AC=2,AOB=2AOC=120,则S弓形ABM=S扇形OAB-SAOB=,S阴影=S半圆-2S弓形ABM=22-2()=2故答案为218、-2【解析】试题分析:根据题意可得2k+32,k2,解得k2因k为整数,所以k=2考点:一次函数图象与系数的关系三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、见解析【解析】证明:D、E是AB、AC的中点DE=BC,EC=AC D、F是AB、BC的中点DF=AC,FC=BCDE=FC=BC,EC=DF=ACAC=BCDE=EC=FC=DF四边形DECF是菱形

20、20、(1)150;(2)详见解析;(3).【解析】(1)用A类人数除以它所占的百分比得到调查的总人数;(2)用总人数分别减去A、C、D得到B类人数,再计算出它所占的百分比,然后补全两个统计图;(3)画树状图展示所有20种等可能的结果数,再找出刚好抽到不同性别学生的结果数,然后利用概率公式求解【详解】解:(1)1510%=150,所以共调查了150名学生;(2)喜欢“立定跳远”学生的人数为150156030=45,喜欢“立定跳远”的学生所占百分比为120%40%10%=30%,两个统计图补充为:(3)画树状图为:共有20种等可能的结果数,其中刚好抽到不同性别学生的结果数为12,所以刚好抽到不同

21、性别学生的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图21、(1)45;(m,m);(2)相似;(3);【解析】试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A坐标;(2)DOEABC表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;(3)当E与原点重合时,把A与E坐标

22、代入,整理即可得到a,b,m的关系式;抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围试题解析:(1)B(2m,0),C(3m,0),OB=2m,OC=3m,即BC=m,AB=2BC,AB=2m=0B,ABO=90,ABO为等腰直角三角形,AOB=45,由旋转的性质得:OD=DA=m,即A(m,m);故答案为45;m,m;(2)DOEABC,理由如下:由已知得:A(2m,2m),B

23、(2m,0),P(2m,m),A为抛物线的顶点,设抛物线解析式为,抛物线过点E(0,n),即m=2n,OE:OD=BC:AB=1:2,EOD=ABC=90,DOEABC;(3)当点E与点O重合时,E(0,0),抛物线过点E,A,整理得:,即;抛物线与四边形ABCD有公共点,抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,a(3m)2(1+am)3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时

24、,a=;若抛物线过点A(2m,2m),则,解得:am=2,m=2,a=1,则抛物线与四边形ABCD有公共点时a的范围为考点:1二次函数综合题;2压轴题;3探究型;4最值问题22、(1)该一次函数解析式为y=x+1(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,1)代入y=kx+b中,得,解得:,该一次函数解析式为y=x+1;(2)当y

25、=x+1=8时,解得x=520,即行驶520千米时,油箱中的剩余油量为8升530520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.23、(1)见解析;(2) 【解析】(1)根据矩形的性质可得AB=CD,C=A=90,再根据折叠的性质可得DE=CD,C=E=90,然后利用“角角边”证明即可;(2)设AF=x,则BF=DF=8-x,根据勾股定理列方程求解即可【详解】(1)证明:在矩形ABCD中,AB=CD,A=C=90,由折叠得:DE=CD,

26、C=E=90,AB=DE,A=E=90,AFB=EFD,ABFEDF(AAS);(2)解:ABFEDF,BF=DF,设AF=x,则BF=DF=8x,在RtABF中,由勾股定理得:BF2=AB2+AF2,即(8x)2=x2+62, x=,即AF=【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,利用勾股定理列出方程是解题的关键24、1+【解析】分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案详解:原式=2-1+-1+2=1+点睛:此题主要考查了实数运算,正确化简各数是解题关键25、见解析【解析】根据等

27、腰三角形的性质与判定及线段垂直平分线的性质解答即可.【详解】过点A作AHBC,垂足为H在ADE中,AD=AE(已知),AHBC(所作),DH=EH(等腰三角形底边上的高也是底边上的中线)又BD=CE(已知),BD+DH=CE+EH(等式的性质),即:BH=CHAHBC(所作),AH为线段BC的垂直平分线AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)B=C(等边对等角)【点睛】本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;26、x=-4是方程的解【解析】分式方程去分母转化为整式方程,

28、求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】x=-4,当x=-4时,x=-4是方程的解【点睛】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根27、(1)yx1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.【解析】试题分析:(1)由点A与点B关于y轴对称,可得AOBO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)

29、由AOBO,PBCO,即可证得结论 ;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y 的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1), BPCD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标试题解析:(1)点A与点B关于y轴对称,AOBO,A(4,0),B(4,0),P(4,2),把P(4,2)代入y得m8,反比例函数的解析式:y 把A(4,0),P(4,2)代入ykxb得:,解得:,所以一次函数的解析式:yx1. (2)点A与点B关于y轴对称,OA=OB PB丄x轴于点B,PBA=90,COA=90,PBCO,点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形点C为线段AP的中点,BC=,BC和PC是菱形的两条边由yx1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y的图象于点D,分别连结PD、BD,点D(8,1), BPCDPEBE1, CEDE4,PB与CD互相垂直平分, 四边形BCPD为菱形. 点D(8,1)即为所求.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁