《文山市重点中学2022-2023学年中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《文山市重点中学2022-2023学年中考二模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示为( )A25104m2B0.2510
2、6m2C2.5105m2D2.5106m22如图,AD是半圆O的直径,AD12,B,C是半圆O上两点若,则图中阴影部分的面积是( )A6B12C18D243据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A3.386108B0.3386109C33.86107D3.3861094下列计算错误的是()A4x32x2=8x5 Ba4a3=aC(x2)5=x10 D(ab)2=a22ab+b25对于点A(x1,y1),B(x2,y2),定义一种运算:例如,A(5,4),B(2,3),若
3、互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】A在同一条直线上 B在同一条抛物线上C在同一反比例函数图象上 D是同一个正方形的四个顶点6如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是ABCD37二元一次方程组的解是()ABCD8下列立体图形中,主视图是三角形的是( )ABCD9计算tan30的值等于( )A B C D10在a24a4的空格中,任意填上“+”或“”,在所有得到的代数式中,能构成完全平方式的概率是( )A1 B C D二、填空题(共7小题,每小题3分,满分21分)11计算:(3)02-1=_12在RtABC内有边长分别为2,x,3的三个正方形如
4、图摆放,则中间的正方形的边长x的值为_13计算的结果等于_.14如图,在平面直角坐标系中,将ABO绕点A顺时针旋转到AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将AB1C1绕点B1顺时针旋转到A1B1C2的位置,点C2在x轴上,将A1B1C2绕点C2顺时针旋转到A2B2C2的位置,点A2在x轴上,依次进行下去若点A(,0),B(0,2),则点B2018的坐标为_15已知是二元一次方程组的解,则m+3n的立方根为_16如图,O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为_ cm17设ABC的面积为1,如图,将边BC、AC分别2等分,BE1、AD1相交于点O,A
5、OB的面积记为S1;如图将边BC、AC分别3等分,BE1、AD1相交于点O,AOB的面积记为S2;,依此类推,则Sn可表示为_(用含n的代数式表示,其中n为正整数)三、解答题(共7小题,满分69分)18(10分)如图,直线y1=x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点(1)求y与x之间的函数关系式;(2)直接写出当x0时,不等式x+b的解集;(3)若点P在x轴上,连接AP把ABC的面积分成1:3两部分,求此时点P的坐标19(5分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作ABx轴于点B,AOB的面积为
6、1.求反比例函数和一次函数的解析式.若一次函数的图象与x轴相交于点C,求ACO的度数.结合图象直接写出:当0时,x的取值范围.20(8分)如图,已知是直角坐标平面上三点.将先向右平移3个单位,再向上平移3个单位,画出平移后的图形;以点为位似中心,位似比为2,将放大,在轴右侧画出放大后的图形;填空:面积为 .21(10分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45方向上,从A向东走600米到达B处,测得C在点B的北偏西60方向上(1)MN是否穿过原始森林保护区,为什么?(参考数据:1.732)(2)若
7、修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22(10分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解根据调查统计结果,绘制了如图所示的不完整的三种统计图表对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n= ;(2)扇形统计图中,D部分扇形所对应的圆心角是 ;(3)请补全条形统计图;(4)根据调查结果,学
8、校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平23(12分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿斜面坡度的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,ABBC
9、,AB/DE.求旗杆AB的高度.(参考数据:sin37,cos37,tan37.计算结果保留根号)24(14分)如图,在ABC中,AB=AC,BAC=120,EF为AB的垂直平分线,交BC于点F,交AB于点E求证:FC=2BF参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】科学记数法的表示形式为a10n,其中1|a|10,n为整数【详解】解:由科学记数法可知:250000 m2=2.5105m2,故选C【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键2、A【解析】根据圆心角与弧的关系得到AOB=BOC=COD=60,根据扇形面积公式计算即可
10、【详解】,AOB=BOC=COD=60.阴影部分面积=.故答案为:A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到AOB=BOC=COD=60.3、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:数字338 600 000用科学记数法可简洁表示为3.386108故选:A【点睛】本题考查科学记数法表示较大的数4、B【解析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一
11、个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(ab)1=a11ab+b1可巧记为:“首平方,末平方,首末两倍中间放”可得答案【详解】A选项:4x31x1=8x5,故原题计算正确;B选项:a4和a3不是同类项,不能合并,故原题计算错误;C选项:(-x1)5=-x10,故原题计算正确;D选项:(a-b)1=a1-1ab+b1,故原题计算正确;故选:B【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则5、A。【解析】对于点A(x1,y1),B(x2,y2),如
12、果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么,。又,。令,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,互不重合的四点C,D,E,F在同一条直线上。故选A。6、B【解析】如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点【详解】解:如图,AB的中点即数轴的原点O根据数轴可以得到点A表示的数是故选:B【点睛】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键7、B【解析】利用加减消元法解二元一次方程组即可得出答案【详解】解:得到y2,把y2代入得到x4,
13、故选:B【点睛】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法8、A【解析】考查简单几何体的三视图根据从正面看得到的图形是主视图,可得图形的主视图【详解】A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意故选A【点睛】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看9、C【解析】tan30= 故选C10、B【解析】试题解析:能够凑成完全平方公式,则4a前可是“-”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(-,-)、(+,+)、(+,
14、-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率是故选B考点:1概率公式;2完全平方式二、填空题(共7小题,每小题3分,满分21分)11、 【解析】分别利用零指数幂a0=1(a0),负指数幂a-p=(a0)化简计算即可.【详解】解:(3)02-1=1-=故答案为:.【点睛】本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键12、1【解析】解:如图在RtABC中(C=90),放置边长分别2,3,x的三个正方形,CEFOMEPFN,OE:PN=OM:PFEF=x,MO=2,PN=3,OE=x2,PF=x3,(x2):3=2:(x3),x=0(不符合题意,舍去),x=1故答
15、案为1点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键13、a3【解析】试题解析:x5x2=x3.考点:同底数幂的除法.14、(6054,2)【解析】分析:分析题意和图形可知,点B1、B3、B5、在x轴上,点B2、B4、B6、在第一象限内,由已知易得AB=,结合旋转的性质可得OA+AB1+B1C2=6,从而可得点B2的坐标为(6,2),同理可得点B4的坐标为(12,2),即点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到的,由此即可推导得到点B2018的坐标.详解:在AOB中,AOB
16、=90,OA=,OB=2,AB=,由旋转的性质可得:OA+AB1+B1C2=OA+AB+OB=6,C2B2=OB=2,点B2的坐标为(6,2),同理可得点B4的坐标为(12,2),由此可得点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到,点B2018相当于是由点B向右平移了:个单位得到的,点B2018的坐标为(6054,2).故答案为:(6054,2).点睛:读懂题意,结合旋转的性质求出点B2和点B4的坐标,分析找到其中点B的坐标的变化规律,是正确解答本题的关键.15、3【解析】把x与y的值代入方程组求出m与n的值,即可确定出所求【详解】解:把代入方程组得
17、:相加得:m+3n=27,则27的立方根为3,故答案为3【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值16、1cm【解析】首先根据题意画出图形,然后连接OA,根据垂径定理得到OC平分AB,即AC=BC,而在RtOAC中,根据勾股数得到AC=4,这样即可得到AB的长【详解】解:如图,连接OA,则OA=5,OC=3,OCAB,AC=BC,在RtOAC中,AC=4,AB=2AC=1故答案为1 【点睛】本题考查垂径定理;勾股定理17、【解析】试题解析:如图,连接D1E1,设AD1、BE1交于点M,AE1:AC=1:(n+1),SABE1:SABC=1:(
18、n+1),SABE1=,SABM:SABE1=(n+1):(2n+1),SABM:=(n+1):(2n+1),Sn=故答案为三、解答题(共7小题,满分69分)18、(1);(2)x1;(3)P(,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x0时,不等式x+b的解集为x1;(3)分两种情况进行讨论,AP把ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3=,或OP=4=,进而得出点P的坐标详解:(1)把A(1,m)代入y1=x+4,可得m=1+4=3,A(1,3),把A(
19、1,3)代入双曲线y=,可得k=13=3,y与x之间的函数关系式为:y=;(2)A(1,3),当x0时,不等式x+b的解集为:x1;(3)y1=x+4,令y=0,则x=4,点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,b=,y2=x+,令y2=0,则x=3,即C(3,0),BC=7,AP把ABC的面积分成1:3两部分,CP=BC=,或BP=BC=OP=3=,或OP=4=,P(,0)或(,0)点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点19、(1)y=
20、;y=x+1;(2)ACO=45;(3)0xy0时,0xy0时,1x200(米)MN不会穿过森林保护区(2)设原计划完成这项工程需要y天,则实际完成工程需要y-5根据题意得:=(1+25),解得:y=25知:y=25的根答:原计划完成这项工程需要25天22、 (1)40;(2)144;(3)作图见解析;(4)游戏规则不公平【解析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题【详解】解:(1)n%=110%15%35%
21、=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:36040%=144,故答案为144;(3)调查的结果为D等级的人数为:40040%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数) P(偶数)故游戏规则不公平【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小23、3+3.5【解析】延长ED交BC延长线于点F,则CFD=90,RtCDF中求得CF=CDcosDCF=2、DF=CD=2,作EGAB,
22、可得GE=BF=4、GB=EF=3.5,再求出AG=GEtanAEG=4tan37可得答案【详解】如图,延长ED交BC延长线于点F,则CFD=90,tanDCF=i=,DCF=30,CD=4,DF=CD=2,CF=CDcosDCF=4=2,BF=BC+CF=2+2=4,过点E作EGAB于点G,则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又AED=37,AG=GEtanAEG=4tan37,则AB=AG+BG=4tan37+3.5=3+3.5,故旗杆AB的高度为(3+3.5)米考点:1、解直角三角形的应用仰角俯角问题;2、解直角三角形的应用坡度坡角问题24、见解析【解析】连接AF,结合条件可得到B=C=30,AFC=60,再利用含30直角三角形的性质可得到AF=BF=CF,可证得结论【详解】证明:连接AF,EF为AB的垂直平分线,AF=BF,又AB=AC,BAC=120,B=C=BAF=30,FAC=90,AF=FC,FC=2BF【点睛】本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键