《江西省上饶市玉山一中等六校2023年高考仿真卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省上饶市玉山一中等六校2023年高考仿真卷数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则( )ABCD2 “”是“,”的( )A充
2、分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件3给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A12种B18种C24种D64种4函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是( )ABCD5在中,“”是“为钝角三角形”的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件6已知集合,则集合的真子集的个数是( )A8B7C4D37如图,在等腰梯形中,为的中点,将与分别沿、向上折起,使、重合为点,则三棱锥的外接球的体积是( )ABCD8二项式展开式中,项
3、的系数为( )ABCD9已知ab0,c1,则下列各式成立的是()AsinasinbBcacbCacbcD10函数的大致图象是( )ABCD11陀螺是中国民间最早的娱乐工具,也称陀罗. 如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )ABCD12若的二项式展开式中二项式系数的和为32,则正整数的值为( )A7B6C5D4二、填空题:本题共4小题,每小题5分,共20分。13已知,的夹角为30,则_.14高三(1)班共有56人,学号依次为1,2,3,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为
4、 15已知数列an的前n项和为Sn,向量(4,n),(Sn,n+3).若,则数列前2020项和为_16已知等比数列的前项和为,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,直线的参数方程为为参数),直线的参数方程(为参数),若直线的交点为,当变化时,点的轨迹是曲线(1)求曲线的普通方程;(2)以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,点为射线与曲线的交点,求点的极径.18(12分)在平面直角坐标系中,已知点,曲线:(为参数)以原点为极点,轴正半轴建立极坐标系,直线的极坐标方程为.()判断点与直
5、线的位置关系并说明理由;()设直线与曲线的两个交点分别为,求的值.19(12分)已知集合,集合,.(1)求集合B;(2)记,且集合M中有且仅有一个整数,求实数k的取值范围.20(12分)已知等差数列的前n项和为,公差,、成等比数列,数列满足.(1)求数列,的通项公式;(2)已知,求数列的前n项和.21(12分)在中,角的对边分别为,若.(1)求角的大小;(2)若,为外一点,求四边形面积的最大值.22(10分)已知在平面四边形中,的面积为.(1)求的长;(2)已知,为锐角,求.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解
6、析】如图所示:在边长为的正方体中,四棱锥满足条件,故,得到答案.【详解】如图所示:在边长为的正方体中,四棱锥满足条件.故,.故,故,.故选:.【点睛】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.2、B【解析】先求出满足的值,然后根据充分必要条件的定义判断【详解】由得,即, ,因此“”是“,”的必要不充分条件故选:B【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础解题时可根据条件与结论中参数的取值范围进行判断3、C【解析】根据题意,分2步进行分析:,将4人分成3组,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项
7、工作,由分步计数原理计算可得答案【详解】解:根据题意,分2步进行分析:,将4人分成3组,有种分法;,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题4、D【解析】由三角函数的周期可得,由函数图像的变换可得, 平移后得到函数解析式为,再求其对称轴方程即可.【详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.5、C
8、【解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在中,因为,所以,因为,所以,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形
9、形状对应的特征.6、D【解析】转化条件得,利用元素个数为n的集合真子集个数为个即可得解.【详解】由题意得,集合的真子集的个数为个.故选:D.【点睛】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.7、A【解析】由题意等腰梯形中的三个三角形都是等边三角形,折叠成的三棱锥是正四面体,易求得其外接球半径,得球体积【详解】由题意等腰梯形中,又,是靠边三角形,从而可得,折叠后三棱锥是棱长为1的正四面体,设是的中心,则平面,外接球球心必在高上,设外接球半径为,即,解得,球体积为故选:A【点睛】本题考查求球的体积,解题关键是由已知条件确定折叠成的三棱锥是正四面体8、D【解析】写出二项式的通
10、项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【点睛】本题主要考查了二项式定理的运算,属于基础题.9、B【解析】根据函数单调性逐项判断即可【详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为ycx为增函数,且ab,所以cacb,正确对C,因为yxc为增函数,故 ,错误;对D, 因为在为减函数,故 ,错误故选B【点睛】本题考查了不等式的基本性质以及指数函数的单调性,属基础题10、A【解析】用排除B,C;用排除;可得正确答案.【详解】解:当时,所以,故可排除B,C;当时,故可排除D故选:A【点睛】本题考查了函数图象,属基础题
11、11、C【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可,【详解】由题意可知几何体的直观图如图:上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:,故选:C【点睛】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.12、C【解析】由二项式系数性质,的展开式中所有二项式系数和为计算【详解】的二项展开式中二项式系数和为,故选:C【点睛】本题考查二项式系数的性质,掌握二项式系数性质是解题关键二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由求出,代入,进行数量积的运算即得.【详解】,存在实数,使得.不共线,.,的夹角
12、为30,.故答案为:1.【点睛】本题考查向量共线定理和平面向量数量积的运算,属于基础题.14、20【解析】根据系统抽样的定义将56人按顺序分成4组,每组14人,则1至14号为第一组,15至28号为第二组,29号至42号为第三组,43号至56号为第四组.而学号6,34,48分别是第一、三、四组的学号,所以还有一个同学应该是15+6-1=20号,故答案为20.15、【解析】由已知可得4Snn(n+3)0,可得Sn,n1时,a1S11.当n2时,anSnSn1.可得:2().利用裂项求和方法即可得出.【详解】,4Snn(n+3)0,Sn,n1时,a1S11.当n2时,anSnSn1.,满足上式,.2
13、().数列前2020项和为2(1)2(1).故答案为:.【点睛】本题考查了向量垂直与数量积的关系、数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.16、【解析】由题意知,继而利用等比数列的前项和为的公式代入求值即可.【详解】解:由题意知,所以.故答案为:.【点睛】本题考查了等比数列的通项公式和求和公式,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)将两直线化为普通方程,消去参数,即可求出曲线的普通方程;(2)设Q点的直角坐标系坐标为,求出,代入曲线C可求解.【详解】(1)直线的普通方程为,直线的普通方程为联立直线,
14、方程消去参数k,得曲线C的普通方程为整理得.(2)设Q点的直角坐标系坐标为,由可得代入曲线C的方程可得,解得(舍),所以点的极径为.【点睛】本题主要考查了直线的参数方程化为普通方程,普通方程化为极坐标方程,极径的求法,属于中档题.18、()点在直线上;见解析()【解析】()直线:,即,所以直线的直角坐标方程为,因为,所以点在直线上;()根据直线的参数方程中参数的几何意义可得.【详解】()直线:,即,所以直线的直角坐标方程为,因为,所以点在直线上;()直线的参数方程为(为参数),曲线的普通方程为,将直线的参数方程代入曲线的普通方程得,设两根为,所以,故与异号,所以,所以.【点睛】本题考查在极坐标
15、参数方程中方程互化,还考查了直线的参数方程中参数的几何意义,属于中档题.19、(1)(2)【解析】(1)由不等式可得,讨论与的关系,即可得到结果;(2)先解得不等式,由集合M中有且仅有一个整数,当时,则M中仅有的整数为;当时,则M中仅有的整数为,进而求解即可.【详解】解:(1)因为,所以,当,即时,; 当,即时,;当,即时,. (2)由得,当,即时,M中仅有的整数为,所以,即; 当,即时,M中仅有的整数为,所以,即; 综上,满足题意的k的范围为【点睛】本题考查解一元二次不等式,考查由交集的结果求参数范围,考查分类讨论思想与运算能力.20、(1),();(2).【解析】(1)根据是等差数列,、成
16、等比数列,列两个方程即可求出,从而求得,代入化简即可求得;(2)化简后求和为裂项相消求和,分组求和即可,注意讨论公比是否为1.【详解】(1)由题意知,由得,解得.又,得,解得或(舍).,.又(),().(2),当时,.当时,.【点睛】此题等差数列的通项公式的求解,裂项相消求和等知识点,考查了化归和转化思想,属于一般性题目.21、(1)(2)【解析】(1)根据正弦定理化简等式可得,即;(2)根据题意,利用余弦定理可得,再表示出,表示出四边形,进而可得最值.【详解】(1),由正弦定理得: 在中,则,即,即.(2)在中,又,则为等边三角形,又,-当时,四边形的面积取最大值,最大值为.【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式的应用,属于基础题22、(1);(2)4.【解析】(1)利用三角形的面积公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,进而求得,利用同角三角函数的基本关系式求得.【详解】(1)在中,由面积公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,为锐角.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形面积公式,考查同角三角函数的基本关系式,属于中档题.