江苏省淮安市岔河九制校2023年中考数学适应性模拟试题含解析.doc

上传人:茅**** 文档编号:88305315 上传时间:2023-04-25 格式:DOC 页数:20 大小:1,014KB
返回 下载 相关 举报
江苏省淮安市岔河九制校2023年中考数学适应性模拟试题含解析.doc_第1页
第1页 / 共20页
江苏省淮安市岔河九制校2023年中考数学适应性模拟试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《江苏省淮安市岔河九制校2023年中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省淮安市岔河九制校2023年中考数学适应性模拟试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1关于x的不等式组无解,那么m的取值范围为( )Am1Bm1C1m0D1m02在下列条件中,能够判定一个四边形是平行四边形的是( )A一组对边平行

2、,另一组对边相等B一组对边相等,一组对角相等C一组对边平行,一条对角线平分另一条对角线D一组对边相等,一条对角线平分另一条对角线3如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是A5:2B3:2C3:1D2:14如图1,一个扇形纸片的圆心角为90,半径为1如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()ABCD5如图,等腰直角三角形纸片ABC中,C=90,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的

3、个数是()CDE=DFB;BDCE;BC=CD;DCE与BDF的周长相等A1个B2个C3个D4个6某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A赚了10元B赔了10元C赚了50元D不赔不赚7把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )Aa=2,b=3Ba=-2,b=-3Ca=-2,b=3Da=2,b=-38如图,直角三角形ABC中,C=90,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为( )A2B+C+2D229在同一平面直角坐标系中,函数y=x+k与(k为常数,k0

4、)的图象大致是()ABCD10设,是一元二次方程x22x10的两个根,则的值是()A2 B1 C2 D1二、填空题(共7小题,每小题3分,满分21分)11已知一个多边形的每一个内角都是,则这个多边形是_边形.12如图,在正方形中,对角线与相交于点,为上一点,为的中点若的周长为18,则的长为_13分解因式:a3a= 14如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_.15在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的四边形,ABC

5、D,CDBC于C,且AB、BC、CD边长分别为2,4,3,则原直角三角形纸片的斜边长是_.16在矩形ABCD中,对角线AC、BD相交于点O,AOB60,AC6cm,则AB的长是_17边长分别为a和2a的两个正方形按如图的样式摆放,则图中阴影部分的面积为_.三、解答题(共7小题,满分69分)18(10分)已知AB是O的直径,PB是O的切线,C是O上的点,ACOP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f(1)求证:PC是O的切线;(2)设OP=AC,求CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围19(5分)如图,已知

6、抛物线经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.20(8分)如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点(1)求证:;(2)当时,求四边形AECF的面积21(10分)(1)计算:|2|(2015)0+()22sin60+;(2)先化简,再求值:(2+),其中a= 22(10分)如图,在RtABC中,C90,以BC为直径的O交AB于点D,DE交AC于点E,且AADE

7、(1)求证:DE是O的切线;(2)若AD16,DE10,求BC的长23(12分)为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:某市自来水销售价格表类别月用水量(立方米)供水价格(元/立方米)污水处理费(元/立方米)居民生活用水阶梯一018(含18)1.901.00阶梯二1825(含25)2.85阶梯三25以上5.70(注:居民生活用水水价=供水价格+污水处理费)(1)当居民月用水量在18立方米及以下时,水价是_元/立方米.(2)4月份小明家用水量为20立方米,应付水费为:18(1.90+1.00)+2(2.85+1.00)=59.90(元)预计6月份小明家的

8、用水量将达到30立方米,请计算小明家6月份的水费.(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议24(14分)如图1,已知ABC是等腰直角三角形,BAC90,点D是BC的中点作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG试猜想线段BG和AE的数量关系是_;将正方形DEFG绕点D逆时针方向旋转(0360),判断(1)中的结论是否仍然成立?请利用图2证明你的结论;若BCDE4,当AE取最大值时,求AF的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】【分析】先求

9、出每一个不等式的解集,然后再根据不等式组无解得到有关m的不等式,就可以求出m的取值范围了.【详解】,解不等式得:x-1,由于原不等式组无解,所以m-1,故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.2、C【解析】A、错误这个四边形有可能是等腰梯形B、错误不满足三角形全等的条件,无法证明相等的一组对边平行C、正确可以利用三角形全等证明平行的一组对边相等故是平行四边形D、错误不满足三角形全等的条件,无法证明相等的一组对边平行故选C3、C【解析】求出正六边形和阴影部分的面积即可解决问题;【详解

10、】解:正六边形的面积,阴影部分的面积,空白部分与阴影部分面积之比是:1,故选C【点睛】本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型4、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出AOD,根据扇形面积公式、三角形面积公式计算,得到答案【详解】解:连接OD,在RtOCD中,OCOD2,ODC30,CD COD60,阴影部分的面积 ,故选:C【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键5、D【解析】等腰直角三角形纸片ABC中,C=90,A=B=45,由折叠可得,EDF=A=45,CDE+BD

11、F=135,DFB+B=135,CDE=DFB,故正确;由折叠可得,DE=AE=3,CD=,BD=BCDC=41,BDCE,故正确;BC=4,CD=4,BC=CD,故正确;AC=BC=4,C=90,AB=4,DCE的周长=1+3+2=4+2,由折叠可得,DF=AF,BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(42)=4+2,DCE与BDF的周长相等,故正确;故选D点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等6、A【解析】试题分析:第一个的进价为:80(1+60%)=50元,第二个的进价为:80

12、(120%)=100元,则802(50+100)=10元,即盈利10元.考点:一元一次方程的应用7、B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.8、D【解析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -SABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CDC=90,AC=2,AB=4,BC=2阴影部分的面积= S半圆ACD +S半圆BCD -SABC=

13、 =.故选:D点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -SABC是解答本题的关键.9、B【解析】选项A中,由一次函数y=x+k的图象知k0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k0,由反比例函数y=的图象知k0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误故选B.10、D【解析】试题分析:、是一元二次方程的两个根,=-1,故选D考点:根与系数的关系二、填空题(共7小题,每小题3分,满分21分)11、十【解析】先求出每一个外角

14、的度数,再根据边数=360外角的度数计算即可【详解】解:180144=36,36036=1,这个多边形的边数是1故答案为十【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键12、【解析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论【详解】解:四边形是正方形,在中,为的中点,的周长为18,在中,根据勾股定理,得,在中,为的中点,又为的中位线,故答案为:.【点睛】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中13、【解析】a3a=a(a2-1)=14、2【解析】设MN=y

15、,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可【详解】作MGDC于G,如图所示:设MN=y,PC=x,根据题意得:GN=2,MG=|10-1x|,在RtMNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)10x10,当10-1x=0,即x=2时,y1最小值=12,y最小值=2即MN的最小值为2;故答案为:2【点睛】本题考查了正方形的性质、勾股定理、二次函数的最值熟练掌握勾股定理和二次函数的最值是解决问题的关键15、4或1【解析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长【详解】如图:因为AC=2,

16、点A是斜边EF的中点,所以EF=2AC=4,如图:因为BD=5,点D是斜边EF的中点,所以EF=2BD=1,综上所述,原直角三角形纸片的斜边长是4或1,故答案是:4或1【点睛】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解16、3cm【解析】根据矩形的对角线相等且互相平分可得OAOBODOC,由AOB60,判断出AOB是等边三角形,根据等边三角形的性质求出AB即可【详解】解:四边形ABCD是矩形,AC6cmOAOCOBOD3cm,AOB60,AOB是等边三角形,ABOA3cm,故答案为:3cm【点睛】本题主要考查矩形的性质和等边三角形的判定和性质

17、,解本题的关键是掌握矩形的对角线相等且互相平分17、1a1【解析】结合图形,发现:阴影部分的面积=大正方形的面积的+小正方形的面积-直角三角形的面积【详解】阴影部分的面积=大正方形的面积+小正方形的面积-直角三角形的面积=(1a)1+a1-1a3a=4a1+a1-3a1=1a1故答案为:1a1【点睛】此题考查了整式的混合运算,关键是列出求阴影部分面积的式子三、解答题(共7小题,满分69分)18、(1)详见解析;(2);(3)【解析】(1)连接OC,根据等腰三角形的性质得到A=OCA,由平行线的性质得到A=BOP,ACO=COP,等量代换得到COP=BOP,由切线的性质得到OBP=90,根据全等

18、三角形的性质即可得到结论;(2)过O作ODAC于D,根据相似三角形的性质得到CDOP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;(3)连接BC,根据勾股定理得到BC=12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论【详解】(1)连接OC,OA=OC,A=OCA,ACOP,A=BOP,ACO=COP,COP=BOP,PB是O的切线,AB是O的直径,OBP=90,在POC与POB中,COPBOP,OCP=OBP=90,PC是O的切线;(2)过O作ODAC于D,ODC=OCP=90,CD=AC,DCO=COP,ODCPCO,CDOP=OC2,OP=A

19、C,AC=OP,CD=OP,OPOP=OC2,sinCPO=;(3)连接BC,AB是O的直径,ACBC,AC=9,AB=1,BC=12,当CMAB时,d=AM,f=BM,d+f=AM+BM=1,当M与B重合时,d=9,f=0,d+f=9,d+f的取值范围是:9d+f1【点睛】本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键19、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.【解析】分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),

20、B(0,2),OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)将原抛物线沿y轴向下平移1个单位后过点C平移后的抛物线解析式为:y=x2-3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想详解: (1)已知抛物线经过,,解得,所求抛物线的解析式为.(2),,可得旋转后点的坐标为.当时,由得,可知抛物线过点.将原抛物线沿轴向下平移1个单位长度后过点.平移后的抛物线解析式为:.(3)点在上,可设点坐标为,将配方得,其对称轴为.由题得(0,1)当时,如图,此时,点的坐标为.当时,如

21、图,同理可得,此时,点的坐标为.综上,点的坐标为或.点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用20、(1)见解析;(2)【解析】(1)根据平行四边形的性质得出AB=CD,BC=AD,B=D,求出BE=DF,根据全等三角形的判定推出即可;(2)求出ABE是等边三角形,求出高AH的长,再求出面积即可【详解】(1)证明:四边形ABCD是平行四边形,点E、F分别是BC、AD的中点,在和中,();(2)作于H,四边形ABCD是平行四边形,点E、F分别是BC、AD的中点,四边形AECF是

22、平行四边形,四边形AECF是菱形,即是等边三角形,由勾股定理得:,四边形AECF的面积是【点睛】本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键21、(1)5+;(2)【解析】试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;(2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.试题解析:(1)原式=21+42+2=21+4+2=5+;(2)原式=,当a=时,原式=22、(1)证明见解析;(2)15.【解析】(1)先连接

23、OD,根据圆周角定理求出ADB=90,根据直角三角形斜边上中线性质求出DE=BE,推出EDB=EBD,ODB=OBD,即可求出ODE=90,根据切线的判定推出即可(2)首先证明AC=2DE=20,在RtADC中,DC=12,设BD=x,在RtBDC中,BC2=x2+122,在RtABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题【详解】(1)证明:连结OD,ACB=90,A+B=90,又OD=OB,B=BDO,ADE=A,ADE+BDO=90,ODE=90DE是O的切线;(2)连结CD,ADE=A,AE=DEBC是O的直径,ACB=90EC是

24、O的切线DE=ECAE=EC,又DE=10,AC=2DE=20,在RtADC中,DC=设BD=x,在RtBDC中,BC2=x2+122,在RtABC中,BC2=(x+16)2202,x2+122=(x+16)2202,解得x=9,BC=.【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.23、(1)1.90;(2)112.65元;(3)当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.【解析】试题分析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可知小明家6月份的水费

25、是:(1.9+1)18+(2.85+1)7+(5.70+1)5=112.65(元);(3)由已知条件可知,用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不会超过25立方米,设他们家的用水量为x立方米,则由题意可得:18(1.9+1)+(x-18)(2.85+1)75.3,解得:x24,即小明家每月的用水量不要超过24立方米.试题解析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可得:小明家6月份的水费是:(1.9+1)18+(2.85+1)7+(5.7

26、0+1)5=112.65(元);(3)由题意可知,当用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不超过18立方米,而不足25立方米,设他们家的用水量为x立方米,则由题意可得:18(1.9+1)+(x-18)(2.85+1)75.3,解得:x24,当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.24、(1)BG=AE(2)成立BG=AE证明见解析.AF=【解析】(1)由等腰直角三角形的性质及正方形的性质就可以得出ADEBDG就可以得出结论;(2)如图2,连接AD,由

27、等腰直角三角形的性质及正方形的性质就可以得出ADEBDG就可以得出结论;由可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论【详解】(1)BG=AE.理由:如图1,ABC是等腰直角三角形,BAC=90,点D是BC的中点,ADBC,BD=CD,ADB=ADC=90.四边形DEFG是正方形,DE=DG.在BDG和ADE中,BD=AD,BDG=ADE,GD=ED,ADEBDG(SAS),BG=AE.故答案为BG=AE;(2)成立BG=AE.理由:如图2,连接AD,在RtBAC中,D为斜边BC中点,AD=BD,ADBC,ADG+GDB=90.四边形EFGD为正方形,DE=DG,且GDE=90,ADG+ADE=90,BDG=ADE.在BDG和ADE中,BD=AD,BDG=ADE,GD=ED,BDGADE(SAS),BG=AE;BG=AE,当BG取得最大值时,AE取得最大值如图3,当旋转角为270时,BG=AE.BC=DE=4,BG=2+4=6.AE=6.在RtAEF中,由勾股定理,得AF= =,AF=2 .【点睛】本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁