《江西省宜春九中2023届高三下学期联合考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江西省宜春九中2023届高三下学期联合考试数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数满足,其中为虚数单位,则( )ABCD2已知命题:R,;命题 :R,则下列命题中为真命题的是( )ABCD3已知,则 ()ABCD4在中,角、所对的边分别为、,若,则( )ABCD5定义在上的函数与其导函数的图象如图所示,设为坐标原点,、四点的横坐标依次为、,则函数的单调递减区间是( )ABCD6已知在中,角的对边分别为,若函数存在极值,则角的取值范围是( )ABCD7设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )ABCD8设、分别是
3、定义在上的奇函数和偶函数,且,则( )AB0C1D39一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )ABCD10设函数,当时,则( )ABC1D11将函数的图象分别向右平移个单位长度与向左平移(0)个单位长度,若所得到的两个图象重合,则的最小值为( )ABCD12双曲线的渐近线方程是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知全集,集合则_14已知为偶函数,当时,则曲线在点处的切线方程是_.15已知ABC得三边长成公比为的等比数列,则其最大角的余弦值为_.16已知集合,若,且,则实数所有的可能取值构成的集合是_.三
4、、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线:,点为抛物线的焦点,焦点到直线的距离为,焦点到抛物线的准线的距离为,且.(1)求抛物线的标准方程;(2)若轴上存在点,过点的直线与抛物线相交于、两点,且为定值,求点的坐标.18(12分)已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数的取值范围.19(12分)如图,已知在三棱台中,.(1)求证:;(2)过的平面分别交,于点,且分割三棱台所得两部分几何体的体积比为,几何体为棱柱,求的长.提示:台体的体积公式(,分别为棱台的上、下底面面积,为棱台的高).20(12分)在中,内角A,B,C的对边分别
5、为a,b,c,且满足.(1)求B;(2)若,AD为BC边上的中线,当的面积取得最大值时,求AD的长.21(12分)如图,四棱锥中,底面是边长为的菱形,点分别是的中点(1)求证:平面;(2)若,求直线与平面所成角的正弦值22(10分)据人民网报道,美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷地区造林总面积造林方式人工造林飞播造林新封山育林退化林修复人工更新内
6、蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重庆2263331006006240063333陕西297642184108336026386516067甘肃325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629宁夏91531589602293882981335北京1906410012400039991053(1)请根据上述数据分别写出在这十个地区中人
7、工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过的概率;(3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先化简求出,即可求得答案.【详解】因为,所以所以故选:A【点睛】此题考查复数的基本运算,注意计算的准确度,属于简单题目.2、B【解析】根据,可知命题的真假,然后对取值,可得命题 的真假,
8、最后根据真值表,可得结果.【详解】对命题:可知,所以R,故命题为假命题命题 :取,可知所以R,故命题为真命题所以为真命题故选:B【点睛】本题主要考查对命题真假的判断以及真值表的应用,识记真值表,属基础题.3、B【解析】利用诱导公式以及同角三角函数基本关系式化简求解即可【详解】,本题正确选项:【点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力4、D【解析】利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.5、B【解析】先辨别出图象中实线部分为函数的图象,虚线部分为其导函数的图象,求出函数的导数
9、为,由,得出,只需在图中找出满足不等式对应的的取值范围即可.【详解】若虚线部分为函数的图象,则该函数只有一个极值点,但其导函数图象(实线)与轴有三个交点,不合乎题意;若实线部分为函数的图象,则该函数有两个极值点,则其导函数图象(虚线)与轴恰好也只有两个交点,合乎题意.对函数求导得,由得,由图象可知,满足不等式的的取值范围是,因此,函数的单调递减区间为.故选:B.【点睛】本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.6、C【解析】求出导函数,由有不等的两实根,即可得不等关系,然后由余弦定理可及余弦函数性质可得结论【详解】,.若存在极值,
10、则,又.又故选:C【点睛】本题考查导数与极值,考查余弦定理掌握极值存在的条件是解题关键7、D【解析】利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【详解】取的中点,则由得,即;在中,为的中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.8、C【解析】先根据奇偶性,求出的解析式,令,即可求出。【详解】因为、分别是定义在上的奇函数和偶函数,用替换,得 ,化简得,即令,所以,故选C。【点睛】本题主要考查函数性质奇偶性的应用。9、D【解析】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体
11、积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D.考点:本题主要考查三视图及几何体体积的计算.10、A【解析】由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值【详解】,时,由题意,故选:A【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键11、B【解析】首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【详解】的最小正周期为,那么(),于是,于是当时,最小值为,故选B.【点睛】该题考查的是有关三角函数的周期与函数
12、图象平移之间的关系,属于简单题目.12、C【解析】根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据补集的定义求解即可.【详解】解:故答案为【点睛】本题主要考查了补集的运算,属于基础题.14、【解析】试题分析:当时,则又因为为偶函数,所以,所以,则,所以切线方程为,即【考点】函数的奇偶性、解析式及导数的几何意义【知识拓展】本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”
13、有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为15、【解析】试题分析:根据题意设三角形的三边长分别设为为,所对的角为最大角,设为,则根据余弦定理得,故答案为.考点:余弦定理及等比数列的定义.16、.【解析】化简集合,由,以及,即可求出结论.【详解】集合,若,则的可能取值为,0,2,3,又因为,所以实数所有的可能取值构成的集合是.故答案为:.【点睛】本题考查集合与元素的关系,理解题意是解题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先分别表示出,然后根据求解出的值,则的标准方程可求;(2)设出
14、直线的方程并联立抛物线方程得到韦达定理形式,然后根据距离公式表示出并代入韦达定理形式,由此判断出为定值时的坐标.【详解】(1)由题意可得,焦点,则,解得.抛物线的标准方程为(2)设,设点,显然直线的斜率不为0.设直线的方程为联立方程,整理可得,要使为定值,必有,解得,为定值时,点的坐标为【点睛】本题考查抛物线方程的求解以及抛物线中的定值问题,难度一般.(1)处理直线与抛物线相交对应的定值问题,联立直线方程借助韦达定理形式是常用方法;(2)直线与圆锥曲线的问题中,直线方程的设法有时能很大程度上起到简化运算的作用。18、(1)(2)【解析】(1)把代入,利用零点分段讨论法求解;(2)对任意成立转化
15、为求的最小值可得.【详解】解:(1)当时,不等式可化为.讨论:当时,所以,所以;当时,所以,所以;当时,所以,所以.综上,当时,不等式的解集为.(2)因为,所以.又因为,对任意成立,所以,所以或.故实数的取值范围为.【点睛】本题主要考查含有绝对值不等式的解法及恒成立问题,恒成立问题一般是转化为最值问题求解,侧重考查数学建模和数学运算的核心素养.19、(1)证明见解析;(2)2【解析】(1)在中,利用勾股定理,证得,又由题设条件,得到,利用线面垂直的判定定理,证得平面,进而得到;(2)设三棱台和三棱柱的高都为上、下底面之间的距离为,根据棱台的体积公式,列出方程求得,得到,即可求解.【详解】(1)
16、由题意,在中,所以,可得,因为,可得.又由,平面,所以平面,因为平面,所以.(2)因为,可得,令,设三棱台和三棱柱的高都为上、下底面之间的距离为,则,整理得,即,解得,即,又由,所以.【点睛】本题主要考查了直线与平面垂直的判定与应用,以及几何体的体积公式的应用,其中解答中熟记线面位置关系的判定定理与性质定理,以及熟练应用几何体的体积公式进行求解是解答的关键,着重考查了推理与计算能力,属于基础题.20、(1);(2).【解析】(1)利用正弦定理及可得,从而得到;(2)在中,利用余弦定可得,而,故当时,的面积取得最大值,此时,在中,再利用余弦定理即可解决.【详解】(1)由正弦定理及已知得,结合,得
17、,因为,所以,由,得.(2)在中,由余弦定得,因为,所以,当且仅当时,的面积取得最大值,此时.在中,由余弦定理得.即.【点睛】本题考查正余弦定理解三角形,涉及到基本不等式求最值,考查学生的计算能力,是一道容易题.21、(1)见解析;(2).【解析】(1)取的中点,连接,通过证明,即可证得;(2)建立空间直角坐标系,利用向量的坐标表示即可得解.【详解】(1)证明:取的中点,连接是的中点,又,四边形是平行四边形,又平面平面,平面(2),同理可得:,又平面连接,设,则,建立空间直角坐标系 设平面的法向量为,则,则,取直线与平面所成角的正弦值为【点睛】此题考查证明线面平行,求线面角的大小,关键在于熟练
18、掌握线面平行的证明方法,法向量法求线面角的基本方法,根据公式准确计算.22、(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省;(2);(3)分布列见详解,数学期望为【解析】(1)通过数据的观察以及计算人工造林面积与造林总面积比值,可得结果.(2)通过数据的观察以及计算新封山育林面积与造林总面积比值,得出比值超过的地区个数,然后可得结果.(3)计算退化林修复面积超过一万公顷的地区中选两个地区总数,退化林修复面积超过六万公顷的地区的个数为,列出所有取值并计算相应概率,然后可得结果.【详解】(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省.(2)记事件A:在这十个地区中,任选一个地区,该地区新封山育林面积占总面积的比值超过根据数据可知:青海地区人工造林面积占总面积比超过,则(3)退化林修复面积超过一万公顷有6个地区:内蒙、河北、河南、重庆、陕西、新疆,其中退化林修复面积超过六万公顷有3个地区:内蒙、河北、重庆,所以X的取值为0,1,2所以,随机变量X的分布列如下:【点睛】本题考查数据的处理以及离散型随机变量的分布列与数学期望,审清题意,细心计算,属基础题.