江苏省泰州市青藤校2022-2023学年中考四模数学试题含解析.doc

上传人:茅**** 文档编号:88305499 上传时间:2023-04-25 格式:DOC 页数:20 大小:815.50KB
返回 下载 相关 举报
江苏省泰州市青藤校2022-2023学年中考四模数学试题含解析.doc_第1页
第1页 / 共20页
江苏省泰州市青藤校2022-2023学年中考四模数学试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《江苏省泰州市青藤校2022-2023学年中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省泰州市青藤校2022-2023学年中考四模数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1函数y=中自变量x的取值范围是Ax0Bx4Cx4Dx42如图,ADBC,AC平分BAD,若B40,则C的度数是()A40B65C70D803孙子算经是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺

2、,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A五丈B四丈五尺C一丈D五尺4下列各式中的变形,错误的是()ABCD5下列计算正确的是()Aa4ba2b=a2b B(ab)2=a2b2Ca2a3=a6 D3a2+2a2=a26tan45的值为( )AB1CD7如图,AB切O于点B,OA2,AB3,弦BCOA,则劣弧BC的弧长为()ABCD8如图,一次函数y1xb与一次函数y2kx4的图象交于点P(1,3),则关于x的不等式xbkx4的解集是(

3、)Ax2Bx0Cx1Dx19由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是( )A4B5C6D710如图,已知ABAD,那么添加下列一个条件后,仍无法判定ABCADC的是( )ACBCDBBCADCACBACDACDBD9011有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOCDODBC12下列计算正确的是()

4、A(8)8=0B3+=3C(3b)2=9b2Da6a2=a3二、填空题:(本大题共6个小题,每小题4分,共24分)13将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为,已知,若以点,为顶点的三角形与相似,则的长度是_.14学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_对.15已知:如图,AD、BE分别是ABC的中线和角平分线,ADBE,ADBE6,则AC的长等于_16同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为 17如图,AB是O的弦,点C在过点B的切线上,且OCOA,OC交AB

5、于点P,已知OAB=22,则OCB=_18如图,ABC中,D、E分别在AB、AC上,DEBC,AD:AB=1:3,则ADE与ABC的面积之比为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 ;(3)A2B2C2的面积是 平方单位2

6、0(6分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率21(6分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的13倍求

7、普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的25倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度22(8分)如图,已知ABC内接于,AB是直径,ODAC,AD=OC(1)求证:四边形OCAD是平行四边形;(2)填空:当B= 时,四边形OCAD是菱形;当B= 时,AD与相切.23(8分)反比例函数y=(k0)与一次函数y=mx+b(m0)交于点A(1,2k1)求反比例函数的解析式;若一次函数与x轴交于点B,且AOB的面积为3,求一次函数的解析式24(10分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示

8、的正整数后,背面向上,洗匀放好(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示)请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?25(10分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中16月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p)3.9万台4.0万台

9、4.1万台4.2万台4.3万台4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台若今年2月份这种品牌手机的销售额为6400万元,求m的值26(12分)已知抛物线y=x26x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D(1)求抛物线的顶点C的坐标及A,B两点的坐标;(2)将抛物线y=x26

10、x+9向上平移1个单位长度,再向左平移t(t0)个单位长度得到新抛物线,若新抛物线的顶点E在DAC内,求t的取值范围;(3)点P(m,n)(3m1)是抛物线y=x26x+9上一点,当PAB的面积是ABC面积的2倍时,求m,n的值27(12分)如图,在中,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC依题意补全图形;求的度数;若,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据二次根式的性质,被开方数大于等于0,列不等

11、式求解【详解】根据题意得:x10,解得x1,则自变量x的取值范围是x1故选B【点睛】本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数2、C【解析】根据平行线性质得出B+BAD180,CDAC,求出BAD,求出DAC,即可得出C的度数【详解】解:ADBC,B+BAD180,B40,BAD140,AC平分DAB,DACBAD70,ABC,CDAC70,故选C【点睛】本题考查了平行线性质和角平分线定义,关键是求出DAC或BAC的度数3、B【解析】【分析】根据同一时刻物高与影长成正比可得出结论【详解】设竹竿的长度为x尺,竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺

12、,影长五寸=0.5尺,解得x=45(尺),故选B【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键4、D【解析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案【详解】A、,故A正确;B、分子、分母同时乘以1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、,故D错误;故选:D【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变5、D【解析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题【详解】 故选项A错误, 故选项B错误

13、,故选项C错误,故选项D正确,故选:D【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.6、B【解析】解:根据特殊角的三角函数值可得tan45=1,故选B【点睛】本题考查特殊角的三角函数值7、A【解析】试题分析:连接OB,OC,AB为圆O的切线,ABO=90,在RtABO中,OA=,A=30,OB=,AOB=60,BCOA,OBC=AOB=60,又OB=OC,BOC为等边三角形,BOC=60,则劣弧长为故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算8、C【解析】试题分析:当x1时,x+bkx+4,即不等式x+bkx+4的解集为x1

14、故选C考点:一次函数与一元一次不等式9、C【解析】试题分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=1故选C10、B【解析】由图形可知ACAC,结合全等三角形的判定方法逐项判断即可.【详解】解:在ABC和ADC中ABAD,ACAC,当CBCD时,满足SSS,可证明ABCACD,故A可以;当BCADCA时,满足SSA,不能证明ABCACD,故B不可以;当BACDAC时,满足SAS,可证明ABCACD,故C可以;当BD90时,满足HL,可证明ABCACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练

15、掌握判定定理是解题关键.11、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.12、C【解析】选项A,原式=-16;选项B,不能够合并;选项C,原式=;选项D,原式=.故选C.二、填空题:(本大

16、题共6个小题,每小题4分,共24分)13、或2【解析】由折叠性质可知BF=BF,BFC与ABC相似,有两种情况,分别对两种情况进行讨论,设出BF=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知BF=BF,设BF=BF=x,故CF=4-x当BFCABC,有,得到方程,解得x=,故BF=;当FBCABC,有,得到方程,解得x=2,故BF=2;综上BF的长度可以为或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.14、1【解析】利用树状图展示所有1种等可能的结果数【详解】解:画树状图为:共有1种等可能的结果数故答案为1【点睛】本题考查了列表法

17、与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率15、【解析】试题分析:如图,过点C作CFAD交AD的延长线于点F,可得BECF,易证BGDCFD,所以GD=DF,BG=CF;又因BE是ABC的角平分线且ADBE,BG是公共边,可证得ABGDBG,所以AG=GD=3;由BECF可得AGEAFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在RtAFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=.考点:全等三角形的判定及性质;相似三角形的判定

18、及性质;勾股定理.16、【解析】试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)一共有36种等可能的结果,两个骰子的点数相同的有6种情况,两个骰子的点数相同的概率为:=故答案

19、为考点:列表法与树状图法17、44【解析】首先连接OB,由点C在过点B的切线上,且OCOA,根据等角的余角相等,易证得CBP=CPB,利用等腰三角形的性质解答即可【详解】连接OB,BC是O的切线,OBBC,OBA+CBP=90,OCOA,A+APO=90,OA=OB,OAB=22,OAB=OBA=22,APO=CBP=68,APO=CPB,CPB=ABP=68,OCB=180-68-68=44,故答案为44【点睛】此题考查了切线的性质此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用18、1:1【解析】试题分析:由DEBC,可得ADEABC,根据相似三角形的面积之比等于相

20、似比的平方可得SADE:SABC=(AD:AB)2=1:1.考点:相似三角形的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)(2,2);(2)(1,0);(3)1【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出A2B2C2的面积试题解析:(1)如图所示:C1(2,2);故答案为(2,2);(2)如图所示:C2(1,0);故答案为(1,0);(3)=20,=20,=40,A2B2C2是等腰直角三角形,A2B2C2的面积是:=1平方单

21、位故答案为1考点:1、平移变换;2、位似变换;3、勾股定理的逆定理20、(1)50;(2)16;(3)56(4)见解析【解析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解【详解】(1)1020%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.图形统计图补

22、充完整如下图所示:(3)700=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图21、(1)520千米;(2)300千米/时【解析】试题分析:(1)根据普通列车的行驶路程=高铁的行驶路程13得出答案;(2)首先设普通列车的平均速度为x千米/时,则高铁平均速度为25x千米/时,根据题意列

23、出分式方程求出未知数x的值试题解析:(1)依题意可得,普通列车的行驶路程为40013=520(千米)(2)设普通列车的平均速度为x千米/时,则高铁平均速度为25x千米/时依题意有:=3 解得:x=120经检验:x=120分式方程的解且符合题意 高铁平均速度:25120=300千米/时答:高铁平均速度为 25120=300千米/时考点:分式方程的应用22、(1)证明见解析;(2) 30, 45【解析】试题分析:(1)根据已知条件求得OAC=OCA,AOD=ADO,然后根据三角形内角和定理得出AOC=OAD,从而证得OCAD,即可证得结论;(2)若四边形OCAD是菱形,则OC=AC,从而证得OC=

24、OA=AC,得出即可求得AD与相切,根据切线的性质得出根据ADOC,内错角相等得出从而求得试题解析:(方法不唯一)(1)OA=OC,AD=OC,OA=AD,OAC=OCA,AOD=ADO,ODAC,OAC=AOD,OAC=OCA=AOD=ADO,AOC=OAD,OCAD,四边形OCAD是平行四边形;(2)四边形OCAD是菱形,OC=AC,又OC=OA,OC=OA=AC, 故答案为 AD与相切, ADOC, 故答案为23、(1)y=;(2)y=或y=【解析】试题分析:(1)把A(1,2k-1)代入y=即可求得结果;(2)根据三角形的面积等于3,求得点B的坐标,代入一次函数y=mx+b即可得到结果

25、试题解析:(1)把A(1,2k1)代入y=得,2k1=k,k=1,反比例函数的解析式为:y=;(2)由(1)得k=1,A(1,1),设B(a,0),SAOB=|a|1=3,a=6,B(6,0)或(6,0),把A(1,1),B(6,0)代入y=mx+b得: , ,一次函数的解析式为:y=x+,把A(1,1),B(6,0)代入y=mx+b得:,一次函数的解析式为:y=所以符合条件的一次函数解析式为:y=或y=x+24、(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】试题分析:(1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;(2)用列表法列举出所有的情况和两张卡片

26、上的数都是勾股数的情况即可.试题解析:(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,P2=,P1=,P2=,P1P2淇淇与嘉嘉抽到勾股数的可能性不一样25、(1)p0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值

27、为1【解析】(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量售价销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可【详解】(1)设pkx+b,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,得: 解得:,p=0.1x+3.8;(2)设该品牌手机在去年第x个月的销售金额为w万元,w(50x+2600)(0.1x+3.8)5x2+70x+98805(x7)2+10125,当x7时,w最大10125,答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3

28、)当x12时,y100,p5,1月份的售价为:100(1m%)元,则2月份的售价为:0.8100(1m%)元;1月份的销量为:5(11.5m%)万台,则2月份的销量为:5(11.5m%)+1.5万台;0.8100(1m%)5(11.5m%)+1.56400,解得:m1%(舍去),m2%,m=1,答:m的值为1【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键26、(1)C(2,0),A(1,4),B(1,9);(2)t5;(2)m=,n=.【解析】分析:()将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求

29、出A、B的坐标 ()由题意可知:新抛物线的顶点坐标为(2t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在DAC内,求t的取值范围 ()直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),易得CFAB,PAB的面积是ABC面积的2倍,所以ABPM=ABCF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n(m+2),所以n=m+4,由于P(m,

30、n)在抛物线y=x21x+9上,联立方程从而可求出m、n的值详解:(I)y=x21x+9=(x2)2,顶点坐标为(2,0) 联立, 解得:或; (II)由题意可知:新抛物线的顶点坐标为(2t,1),设直线AC的解析式为y=kx+b 将A(1,4),C(2,0)代入y=kx+b中, 解得:, 直线AC的解析式为y=2x+1 当点E在直线AC上时,2(2t)+1=1,解得:t= 当点E在直线AD上时,(2t)+2=1,解得:t=5,当点E在DAC内时,t5; (III)如图,直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G由直线y=x+2与x轴交于点D,与y轴

31、交于点F,得D(2,0),F(0,2),OD=OF=2 FOD=90,OFD=ODF=45 OC=OF=2,FOC=90,CF=2,OFC=OCF=45, DFC=DFO+OFC=45+45=90,CFAB PAB的面积是ABC面积的2倍,ABPM=ABCF, PM=2CF=1 PNx轴,FDO=45,DGN=45,PGM=45在RtPGM中,sinPGM=, PG=3 点G在直线y=x+2上,P(m,n), G(m,m+2) 2m1,点P在点G的上方,PG=n(m+2),n=m+4 P(m,n)在抛物线y=x21x+9上,m21m+9=n,m21m+9=m+4,解得:m= 2m1,m=不合题

32、意,舍去,m=,n=m+4= 点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识27、(1)见解析;(2)90;(3)解题思路见解析.【解析】(1)将线段AD绕点A逆时针方向旋转90,得到线段AE,连结EC(2)先判定ABDACE,即可得到,再根据,即可得出;(3)连接DE,由于ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在RtADH中,由,AD=1可求AH、DH的长;由DF、DH的长可求HF的长;在RtAHF中,由AH和HF,利用勾股定理可求AF的长【详解】解:如图,线段AD绕点A逆时针方向旋转,得到线段AE,在和中,中,;连接DE,由于为等腰直角三角形,所以可求;由,可求的度数和的度数,从而可知DF的长;过点A作于点H,在中,由,可求AH、DH的长;由DF、DH的长可求HF的长;在中,由AH和HF,利用勾股定理可求AF的长故答案为(1)见解析;(2)90;(3)解题思路见解析.【点睛】本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁