《江苏省泰州市泰州中学2022-2023学年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省泰州市泰州中学2022-2023学年中考冲刺卷数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1若代数式有意义,则实数x的取值范围是( )Ax0Bx2
2、Cx0Dx22甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A甲超市的利润逐月减少B乙超市的利润在1月至4月间逐月增加C8月份两家超市利润相同D乙超市在9月份的利润必超过甲超市3如图,在ABC中,CAB75,在同一平面内,将ABC绕点A逆时针旋转到ABC的位置,使得CCAB,则CAC为()A30B35C40D504计算 的结果为()A1BxCD5一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )Ax1Bx1Cx3Dx36如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()ABCD7已知3a2b=1,则代数式56a+4b的值是
3、()A4 B3 C1 D38在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为( )A13.51106B1.351107C1.351106D0.15311089一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有( )A1种B2种C3种D6种10如图,点P是AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PMN周长的最小值是5cm,则AOB的度数是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,已知,则_.12分解因式:1
4、3如图,将直尺与含30角的三角尺摆放在一起,若1=20,则2的度数是_.14如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40,点A旋转到A的位置,则图中阴影部分的面积为_(结果保留)15已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是_16如图,的半径为1,正六边形内接于,则图中阴影部分图形的面积和为_(结果保留)三、解答题(共8题,共72分)17(8分)如图,点D为O上一点,点C在直径BA的延长线上,且CDA=CBD判断直线CD和O的位置关系,并说明理由过点B作O的切线BE交直线CD于点E,若AC=2,O的半径是3,求BE的长18(8分)
5、(1)解方程:(2)解不等式组:19(8分)如图,在RtABC中,B=90,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使BCM=2A判断直线MN与O的位置关系,并说明理由;若OA=4,BCM=60,求图中阴影部分的面积20(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间21(8分)如图山坡上有一根旗杆AB,旗杆底部
6、B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45,旗杆底部B的仰角为20(1)求坡角BCD;(2)求旗杆AB的高度(参考数值:sin200.34,cos200.94,tan200.36)22(10分)先化简,再求值:(1),其中x=123(12分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表 等级得分x(分)频数(人)A95x1
7、004B90x95mC85x90nD80x8524E75x808F70x754请你根据图表中的信息完成下列问题:(1)本次抽样调查的样本容量是 其中m ,n (2)扇形统计图中,求E等级对应扇形的圆心角的度数;(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率24如图,矩形ABCD绕点C顺时针旋转90后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;(1)求证:AM=FM;(2)若AMD=a求证:
8、=cos参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据分式的分母不等于0即可解题.【详解】解:代数式有意义,x-20,即x2,故选D.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.2、D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D【点睛】本题主要考查折线统计图,折线图是用一个
9、单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来以折线的上升或下降来表示统计数量增减变化3、A【解析】根据旋转的性质可得AC=AC,BAC=BAC,再根据两直线平行,内错角相等求出ACC=CAB,然后利用等腰三角形两底角相等求出CAC,再求出BAB=CAC,从而得解【详解】CCAB,CAB75,CCACAB75,又C、C为对应点,点A为旋转中心,ACAC,即ACC为等腰三角形,CAC1802CCA30故选A【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键4、A【解析】根据同分母分式的加减运算法则计算可得【详解】原式=1,故选:A【点
10、睛】本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则5、C【解析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x1故选C考点:在数轴上表示不等式的解集6、C【解析】看到的棱用实线体现.故选C.7、B【解析】先变形,再整体代入,即可求出答案【详解】3a2b=1,56a+4b=52(3a2b)=521=3,故选:B【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键8、B【解析】根据科学记数法进行解答.【详解】1315万即13510000,用科学记数法表示为1.351107.故选择B.【点睛】本题主要考查科学记数法,科学记数法表示数的
11、标准形式是a10n(1a10且n为整数).9、C【解析】试题分析:一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,故选C考点:正方体相对两个面上的文字10、B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时PMN的周长最小由线段垂直平分线性质可得出PMN的周长就是P3P3的长,OP=3,OP3=OP3=OP=3又P3P3=3,,OP3=OP3=P3P3,OP3P3是等边三角形, P3OP3=60,即3(AOP+BOP)=60,AOP+BOP=30,即AOB=3
12、0,故选B考点:3线段垂直平分线性质;3轴对称作图二、填空题(本大题共6个小题,每小题3分,共18分)11、65【解析】根据两直线平行,同旁内角互补求出3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】mn,1=105,3=1801=180105=75=23=14075=65故答案为:65.【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出3.12、【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式因此,先提取公因式后继续应用平方差公式分
13、解即可:考点:提公因式法和应用公式法因式分解13、50【解析】先根据三角形外角的性质求出BEF的度数,再根据平行线的性质得到2的度数【详解】如图所示:BEF是AEF的外角,1=20,F=30,BEF=1+F=50,ABCD,2=BEF=50,故答案是:50【点睛】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和)14、【解析】【分析】根据题意可得出阴影部分的面积等于扇形ABA的面积加上半圆面积再减去半圆面积【详解】S阴影=S扇形ABA+S半圆-S半圆=S扇形ABA=,故答案为.【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公
14、式且能准确识图是解题的关键.15、a2且a1【解析】利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围【详解】试题解析:关于x的一元二次方程(a-1)x2-2x+l=0有两个不相等的实数根,=b2-4ac0,即4-4(a-2)10,解这个不等式得,a2,又二次项系数是(a-1),a1故a的取值范围是a2且a1【点睛】本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零16、.【解析】连接OA,OB,OC,则根据正六边形内接于可知阴影部分的面积等于扇形OAB的面积,计算出扇形OAB的面积即可.【详解】
15、解:如图所示,连接OA,OB,OC,正六边形内接于AOB=60,四边形OABC是菱形, AG=GC,OG=BG,AGO=BGCAGOBGC.AGO的面积=BGC的面积弓形DE的面积=弓形AB的面积阴影部分的面积=弓形DE的面积+ABC的面积=弓形AB的面积+AGB的面积+BGC的面积=弓形AB的面积+AGB的面积+AGO的面积=扇形OAB的面积= = 故答案为.【点睛】本题考查了扇形的面积计算公式,利用数形结合进行转化是解题的关键.三、解答题(共8题,共72分)17、解:(1)直线CD和O的位置关系是相切,理由见解析(2)BE=1【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可
16、得DAB+DBA=90,再由CDA=CBD可得CDA+ADO=90,从而得CDO=90,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可试题解析:(1)直线CD和O的位置关系是相切,理由是:连接OD,AB是O的直径,ADB=90,DAB+DBA=90,CDA=CBD,DAB+CDA=90,OD=OA,DAB=ADO,CDA+ADO=90,即ODCE,直线CD是O的切线,即直线CD和O的位置关系是相切;(2)AC=2,O的半径是3,OC=2+3=5,OD=3,在RtCDO中,由勾股定理得:CD=4,CE切O于D,E
17、B切O于B,DE=EB,CBE=90,设DE=EB=x,在RtCBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=1,即BE=1考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理18、(1)无解;(1)1x1【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可【详解】(1)去分母得:1x+1=3x+6,解得:x=1,经检验x=1是增根,分式方程无解;(1),由得:x1,由得:x1,则不等式组的解集为1x1【点睛】此题考查
18、了解分式方程,利用了转化的思想,解分式方程注意要检验19、(1)相切;(2)【解析】试题分析:(1)MN是O切线,只要证明OCM=90即可(2)求出AOC以及BC,根据S阴=S扇形OACSOAC计算即可试题解析:(1)MN是O切线理由:连接OCOA=OC,OAC=OCA,BOC=A+OCA=2A,BCM=2A,BCM=BOC,B=90,BOC+BCO=90,BCM+BCO=90,OCMN,MN是O切线(2)由(1)可知BOC=BCM=60,AOC=120,在RTBCO中,OC=OA=4,BCO=30,BO=OC=2,BC=2S阴=S扇形OACSOAC=考点:直线与圆的位置关系;扇形面积的计算2
19、0、(4)500;(4)440,作图见试题解析;(4)4.4【解析】(4)利用0.5小时的人数除以其所占比例,即可求出样本容量;(4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;(4)计算出该市中小学生一天中阳光体育运动的平均时间即可【详解】解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,本次调查共抽样了500名学生; (4)4.5小时的人数为:5004.4=440(人),如图所示:(4)根据题意得:=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时考点:4频数(率)分布直方图;4扇形统计图;4加权平均数21、旗杆AB的高度为6
20、.4米.【解析】分析:(1)根据坡度i与坡角之间的关系为:i=tan进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可本题解析:(1)斜坡BC的坡度i=1:,tanBCD= ,BCD=30;(2)在RtBCD中,CD=BCcosBCD=6=9,则DF=DC+CF=10(米),四边形GDFE为矩形,GE=DF=10(米),AEG=45,AG=DE=10(米),在RtBEG中,BG=GEtanBEG=100.36=3.6(米),则AB=AGBG=103.6=6.4(米).答:旗杆AB的高度为6.4米。22、-1.【解析】先化简题目中的式子,再将x的值代入化简后的式子即可
21、解答本题【详解】解:原式=,=,=, =,当x=1时,原式=1【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则23、(1)80,12,28;(2)36;(3)140人;(4)【解析】(1)用D组的频数除以它所占的百分比得到样本容量;用样本容量乘以B组所占的百分比得到m的值,然后用样本容量分别减去其它各组的频数即可得到n的值;(2)用E组所占的百分比乘以360得到的值;(3)利用样本估计整体,用700乘以A、B两组的频率和可估计体育测试成绩在A、B两个等级的人数;(4)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解【详解】
22、(1)2430%=80,所以样本容量为80;m=8015%=12,n=801242484=28;故答案为80,12,28;(2)E等级对应扇形的圆心角的度数=360=36;(3)700=140,所以估计体育测试成绩在A、B两个等级的人数共有140人;(4)画树状图如下:共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,所以恰好抽到甲和乙的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率也考查了统计图24、(1)见解析;(2)见解析.【解析】(1)由旋转性质可知:AD=FG,DC=
23、CG,可得CGD=45,可求FGH=FHG=45,则HF=FG=AD,所以可证ADMMHF,结论可得(2)作FNDG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cos=cosFMG=,代入可证结论成立【详解】(1)由旋转性质可知:CD=CG且DCG=90,DGC=45从而DGF=45,EFG=90,HF=FG=AD又由旋转可知,ADEF,DAM=HFM,又DMA=HMF,ADMFHMAM=FM(2)作FNDG垂足为NADMMFHDM=MH,AM=MF=AFFH=FG,FNHGHN=NGDG=DM+HM+HN+NG=2(MH+HN)MN=DGcosFMG=cosAMD=cos【点睛】本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形