《江苏省泰州中学2022-2023学年中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省泰州中学2022-2023学年中考二模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,PA,PB分别与O相切于A,B两点,若C65,则P的度数为( )A65B130C50D1002小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t
2、(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:小明家距学校4千米;小明上学所用的时间为12分钟;小明上坡的速度是0.5千米/分钟;小明放学回家所用时间为15分钟其中正确的个数是()A1个B2个C3个D4个3五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A2、40 B42、38 C40、42 D42、404如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A(4,4
3、)B(3,3)C(3,1)D(4,1)5下列二次根式中,为最简二次根式的是()ABCD6已知关于x的一元二次方程有两个相等的实根,则k的值为( )ABC2或3D或7有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )ABCD8菱形的两条对角线长分别是6cm和8cm,则它的面积是()A6cm2B12cm2C24cm2D48cm29如图是正方体的表面展开图,则与“前”字相对的字是()A认B真C复D习10对于二次函数,下列说法正确的是( )A当x0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点11二次函数yx26x+m的图象与x轴有两个交点,
4、若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A(1,0)B(4,0)C(5,0)D(6,0)12如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13分解因式: _.14如图,矩形ABCD面积为40,点P在边CD上,PEAC,PFBD,足分别为E,F若AC10,则PE+PF_15实数,3,0中的无理数是_16计算:12_17如图,在长方形ABCD中,AFBD,垂足为E,AF交BC于点F,连接DF图中有全等三角形_对,有面积相等但不全等的三角形_对18如图,将ABC绕点A逆时针旋转
5、100,得到ADE.若点D在线段BC的延长线上,则的大小为_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加
6、工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案20(6分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将ABC绕C点按顺时针方向旋转90得到A1B1C(1)画出A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长21(6分)先化简,再求值:,其中与2,3构成的三边,且为整数.22(8分)先化简,再求值:(a)(1+),其中a是不等式 a的整数解23(8分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(1,0)B(3,0)两点,与y轴交于点C求抛物线y=ax2+2x+c的解
7、析式:;点D为抛物线上对称轴右侧、x轴上方一点,DEx轴于点E,DFAC交抛物线对称轴于点F,求DE+DF的最大值;在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;点Q在抛物线对称轴上,其纵坐标为t,请直接写出ACQ为锐角三角形时t的取值范围24(10分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD
8、,APB=CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使APB=CPD=90,其他条件不变,直接写出中点四边形EFGH的形状(不必证明)25(10分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空
9、调按每台九五折出售,最多可将多少台空调打折出售?26(12分)如图,以D为顶点的抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=x+1求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由27(12分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(3,0)、B(1,0)(1)求平移后的抛物线的表达式(2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,
10、P点坐标是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形BOD相似?若存在,求点M坐标;若不存在,说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题分析:PA、PB是O的切线,OAAP,OBBP,OAP=OBP=90,又AOB=2C=130,则P=360(90+90+130)=50故选C考点:切线的性质2、C【解析】从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡
11、(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解【详解】解:小明家距学校4千米,正确;小明上学所用的时间为12分钟,正确;小明上坡的速度是千米/分钟,错误;小明放学回家所用时间为3+2+1015分钟,正确;故选:C【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一3、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据
12、的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.4、A【解析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标【详解】以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,A点与C点是对应点,C点的对应点A的坐标为(2,2),位似比为1:2,点C的坐标为:(4,4)故选A【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键5、B【解析】最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是(
13、整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).【详解】A. =3, 不是最简二次根式; B. ,最简二次根式; C. =,不是最简二次根式; D. =,不是最简二次根式.故选:B【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.6、A【解析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论【详解】方程有两个相等的实根,=k2-423=k2-24=0,解得:k=故选A【点睛】本题考查了根的判别式,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键7、C【解析】试题分析:根据主视图是从正面看得到的图
14、形,可得答案解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形故选C考点:简单组合体的三视图8、C【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积【详解】根据对角线的长可以求得菱形的面积,根据S=ab=6cm8cm=14cm1故选:C【点睛】考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.9、B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”故选B点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.10
15、、B【解析】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.11、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,其中一个交点的坐标为,则另一个交点的坐标为,故选C【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质12、D【解析】根据轴对称图形的概念求解【详解
16、】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形故选D【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】先提取公因式b,再利用完全平方公式进行二次分解解答:解:a1b-1ab+b,=b(a1-1a+1),(提取公因式)=b(a-1)1(完全平方公式)14、4【解析】由矩形的性质可得AO=CO=5=BO=DO,由SDCO=SDPO+SPCO,可得PE+PF的值【详解】解:如图,设AC与BD的交点为O,连接PO,四边形AB
17、CD是矩形AO=CO=5=BO=DO,SDCO=S矩形ABCD=10,SDCO=SDPO+SPCO,10=DOPF+OCPE20=5PF+5PEPE+PF=4故答案为4【点睛】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键15、【解析】无理数包括三方面的数:含的,一些开方开不尽的根式,一些有规律的数,根据以上内容判断即可【详解】解:4,是有理数,3、0都是有理数,是无理数故答案为:【点睛】本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:含的,一些开方开不尽的根式,一些有规律的数16、-3【解析】-1-2=-1+(-2)=-(1+2)=-3,
18、故答案为-3.17、1 1 【解析】根据长方形的对边相等,每一个角都是直角可得AB=CD,AD=BC,BAD=C=90,然后利用“边角边”证明RtABD和RtCDB全等;根据等底等高的三角形面积相等解答【详解】有,RtABDRtCDB,理由:在长方形ABCD中,AB=CD,AD=BC,BAD=C=90,在RtABD和RtCDB中,RtABDRtCDB(SAS);有,BFD与BFA,ABD与AFD,ABE与DFE,AFD与BCD面积相等,但不全等故答案为:1;1【点睛】本题考查了全等三角形的判定,长方形的性质,以及等底等高的三角形的面积相等18、40【解析】根据旋转的性质可得出ABAD、BAD1
19、00,再根据等腰三角形的性质可求出B的度数,此题得解【详解】根据旋转的性质,可得:ABAD,BAD100,BADB(180100)40故填:40.【点睛】本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出B的度数是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)甲种材料每千克25元,乙种材料每千克35元(2)共有四种方案;(3)生产A产品21件,B产品39件成本最低【解析】试题分析:(1)、首先设甲种材料每千克x元, 乙种材料每千克y元,根据题意列出二元一次方程组得出答案;(2)、设生产B产品a件,则A产品(6
20、0a)件,根据题意列出不等式组,然后求出a的取值范围,得出方案;得出生产成本w与a的函数关系式,根据函数的增减性得出答案.试题解析:(1)设甲种材料每千克x元, 乙种材料每千克y元,依题意得:解得:答:甲种材料每千克25元, 乙种材料每千克35元. (2)生产B产品a件,生产A产品(60-a)件. 依题意得:解得:a的值为非负整数 a=39、40、41、42 共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件(3)、答:生产A产品21件,B产品39件成本最低. 设生产成本为W元,则W与a的关系式为:w=(254+351+40)(60
21、a)+(35+253+50)a=55a+10500k=550 W随a增大而增大当a=39时,总成本最低.考点:二元一次方程组的应用、不等式组的应用、一次函数的应用.20、(1)画图见解析;(2)A1(0,6);(3)弧BB1=【解析】(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;(2)根据图形得出点的坐标;(3)根据弧长的计算公式求出答案【详解】解:(1)A1B1C如图所示(2)A1(0,6)(3) 【点睛】本题考查了旋转作图和弧长的计算.21、1【解析】试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a的值,然后代入进行计算
22、即可.试题解析:原式= ,a与2、3构成ABC的三边,32a3+2,即1a5,又a为整数,a=2或3或4,当x=2或3时,原分式无意义,应舍去,当a=4时,原式=122、,1【解析】首先化简(a)(1+),然后根据a是不等式a的整数解,求出a的值,再把求出的a的值代入化简后的算式,求出算式的值是多少即可【详解】解:(a)(1+)=,a是不等式a的整数解,a=1,1,1,a1,a+11,a1,1,a=1,当a=1时,原式=123、(1)y=x2+2x+3;(2)DE+DF有最大值为;(3)存在,P的坐标为(,)或(,);t【解析】(1)设抛物线解析式为y=a(x+1)(x3),根据系数的关系,即
23、可解答(2)先求出当x=0时,C的坐标,设直线AC的解析式为y=px+q,把A,C的坐标代入即可求出AC的解析式,过D作DG垂直抛物线对称轴于点G,设D(x,x2+2x+3),得出DE+DF=x2+2x+3+(x-1)=x2+(2+)x+3-,即可解答(3)过点C作AC的垂线交抛物线于另一点P1,求出直线PC的解析式,再结合抛物线的解析式可求出P1,过点A作AC的垂线交抛物线于另一点P2,再利用A的坐标求出P2,即可解答观察函数图象与ACQ为锐角三角形时的情况,即可解答【详解】解:(1)设抛物线解析式为y=a(x+1)(x3),即y=ax22ax3a,2a=2,解得a=1,抛物线解析式为y=x
24、2+2x+3;(2)当x=0时,y=x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(1,0),C(0,3)代入得,解得,直线AC的解析式为y=3x+3,如答图1,过D作DG垂直抛物线对称轴于点G,设D(x,x2+2x+3),DFAC,DFG=ACO,易知抛物线对称轴为x=1,DG=x-1,DF=(x-1),DE+DF=x2+2x+3+(x-1)=x2+(2+)x+3-,当x=,DE+DF有最大值为; 答图1 答图2(3)存在;如答图2,过点C作AC的垂线交抛物线于另一点P1,直线AC的解析式为y=3x+3,直线PC的解析式可设为y=x+m,把C(0,3)代入得m=3
25、,直线P1C的解析式为y=x+3,解方程组,解得或,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于另一点P2,直线AP2的解析式可设为y=x+n,把A(1,0)代入得n=,直线PC的解析式为y=,解方程组,解得或,则此时P2点坐标为(,),综上所述,符合条件的点P的坐标为(,)或(,);t【点睛】此题考查二次函数综合题,解题关键在于把已知点代入解析式求值和作辅助线.24、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EHFG,EH=FG即可(2)四边形EFGH是菱形先证明APCBPD
26、,得到AC=BD,再证明EF=FG即可(3)四边形EFGH是正方形,只要证明EHG=90,利用APCBPD,得ACP=BDP,即可证明COD=CPD=90,再根据平行线的性质即可证明【详解】(1)证明:如图1中,连接BD点E,H分别为边AB,DA的中点,EHBD,EH=BD,点F,G分别为边BC,CD的中点,FGBD,FG=BD,EHFG,EH=GF,中点四边形EFGH是平行四边形(2)四边形EFGH是菱形证明:如图2中,连接AC,BDAPB=CPD,APB+APD=CPD+APD,即APC=BPD,在APC和BPD中,AP=PB,APC=BPD,PC=PD,APCBPD,AC=BD点E,F,
27、G分别为边AB,BC,CD的中点,EF=AC,FG=BD,四边形EFGH是平行四边形,四边形EFGH是菱形(3)四边形EFGH是正方形证明:如图2中,设AC与BD交于点OAC与PD交于点M,AC与EH交于点NAPCBPD,ACP=BDP,DMO=CMP,COD=CPD=90,EHBD,ACHG,EHG=ENO=BOC=DOC=90,四边形EFGH是菱形,四边形EFGH是正方形考点:平行四边形的判定与性质;中点四边形25、(1)2400元;(2)8台【解析】试题分析:(1)设商场第一次购入的空调每台进价是x元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍
28、,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;(2)设最多将台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可试题解析:(1)设第一次购入的空调每台进价是x元,依题意,得 解得 经检验,是原方程的解答:第一次购入的空调每台进价是2 400元(2)由(1)知第一次购入空调的台数为24 0002 40010(台),第二次购入空调的台数为10220(台)设第二次将y台空调打折出售,由题意,得解得 答:最多可将8台空调打折出售26、(1)y=x2+2x+1;(2)P ( ,);(1
29、)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与BCD相似【解析】(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O,则O(1,1),则OP+AP的最小值为AO的长,然后求得AO的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明BCD为直角三角形,然后分为AQCDCB和ACQDCB两种情况求解即可【详解】(1)把x=0代入y=x+1,得:y=1,C(0,1)把y=0代入y=x+1得:x=1,B(1,0),A(1,0).将C
30、(0,1)、B(1,0)代入y=x2+bx+c得: ,解得b=2,c=1抛物线的解析式为y=x2+2x+1(2)如图所示:作点O关于BC的对称点O,则O(1,1)O与O关于BC对称,PO=POOP+AP=OP+APAOOP+AP的最小值=OA=2OA的方程为y=P点满足解得:所以P ( ,)(1)y=x2+2x+1=(x1)2+4,D(1,4)又C(0,1,B(1,0),CD=,BC=1,DB=2CD2+CB2=BD2,DCB=90A(1,0),C(0,1),OA=1,CO=1又AOC=DCB=90,AOCDCB当Q的坐标为(0,0)时,AQCDCB如图所示:连接AC,过点C作CQAC,交x轴
31、与点QACQ为直角三角形,COAQ,ACQAOC又AOCDCB,ACQDCB,即,解得:AQ=3Q(9,0)综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与BCD相似【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想27、(1)y=x2+2x3;(2)点P坐标为(1,2);(3)点M坐标为(1,3)或(1,2)【解析】(1)设平移后抛物线的表达式为y=a(x+3)(x-1)由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达
32、式;(2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C坐标,连接BC,与对称轴交点即为所求点P,再求得直线BC解析式,联立方程组求解可得;(3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到EDO为等腰三角直角三角形,从而可得到MDO=BOD=135,故此当或时,以M、O、D为顶点的三角形与BOD相似由比例式可求得MD的长,于是可求得点M的坐标【详解】(1)设平移后抛物线的表达式为y=a(x+3)(x1),由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,平移后抛物线的二次项系数与原抛物线的二次项系数相同,平移后抛物
33、线的二次项系数为1,即a=1,平移后抛物线的表达式为y=(x+3)(x1),整理得:y=x2+2x3;(2)y=x2+2x3=(x+1)24,抛物线对称轴为直线x=1,与y轴的交点C(0,3),则点C关于直线x=1的对称点C(2,3),如图1,连接B,C,与直线x=1的交点即为所求点P,由B(1,0),C(2,3)可得直线BC解析式为y=x1,则,解得,所以点P坐标为(1,2);(3)如图2,由得,即D(1,1),则DE=OD=1,DOE为等腰直角三角形,DOE=ODE=45,BOD=135,OD=,BO=1,BD=,BOD=135,点M只能在点D上方,BOD=ODM=135,当或时,以M、O、D为顶点的三角形BOD相似,若,则,解得DM=2,此时点M坐标为(1,3);若,则,解得DM=1,此时点M坐标为(1,2);综上,点M坐标为(1,3)或(1,2)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得ODM=BOD=135是解题的关键