《江苏省宿迁市泗洪中学2023届高三第一次调研测试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省宿迁市泗洪中学2023届高三第一次调研测试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则( )ABCD2执行如图所示的程序框图,若输出的,则输入的整数的最大值为( )A7B15C31D633在中,角,的对边分别为,若,则( )AB3CD44数学中有许多形状
2、优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:曲线有四条对称轴;曲线上的点到原点的最大距离为;曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;四叶草面积小于.其中,所有正确结论的序号是( )ABCD5 的内角的对边分别为,已知,则角的大小为( )ABCD6自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名
3、医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有( )A12种B24种C36种D72种7某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )A各月最高气温平均值与最低气温平均值总体呈正相关B全年中,2月份的最高气温平均值与最低气温平均值的差值最大C全年中各月最低气温平均值不高于10C的月份有5个D从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势8双曲线的一条渐近线方程为,那么它的离心率为( )ABCD9设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不
4、必要条件10如图是一个算法流程图,则输出的结果是()ABCD11一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为( )ABCD12易系辞上有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( ) ABCD二、填空题:本题共4小题,每小题5分,共20分。13满足线性的约束条件的目标函数的最大值为_14在平面直角坐标系中,点的坐标为,点是直线:上位于第
5、一象限内的一点已知以为直径的圆被直线所截得的弦长为,则点的坐标_15已知等比数列的前项和为,且,则_.16给出下列四个命题,其中正确命题的序号是_(写出所有正确命题的序号)因为所以不是函数的周期;对于定义在上的函数若则函数不是偶函数;“”是“”成立的充分必要条件;若实数满足则三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若曲线的切线方程为,求实数的值;(2)若函数在区间上有两个零点,求实数的取值范围.18(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的人的得分(满分:
6、分)数据,统计结果如下表所示组别频数 (1)已知此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求;(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.()得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;()每次赠送的随机话费和相应的概率如下表.赠送的随机话费/元概率现市民甲要参加此次问卷调查,记为该市民参加问卷调查获赠的话费,求的分布列及数学期望附:,若,则,.19(12分)已知,且(1)请给出的一组值,使得成立;(2)证明不等式恒成立20(12分)已知件次品和件正品混放在一起,现需要通
7、过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列21(12分)如图,在中,点在线段上.(1)若,求的长;(2)若,求的面积.22(10分)定义:若数列满足所有的项均由构成且其中有个,有个,则称为“数列”(1)为“数列”中的任意三项,则使得的取法有多少种?(2)为“数列”中的任意三项,则存在多少正整数对使得且的概率为.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每
8、小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意和交集的运算直接求出.【详解】 集合,.故选:C.【点睛】本题考查了集合的交集运算.集合进行交并补运算时,常借助数轴求解.注意端点处是实心圆还是空心圆.2、B【解析】试题分析:由程序框图可知:,;,;,;,;,. 第步后输出,此时,则的最大值为15,故选B.考点:程序框图.3、B【解析】由正弦定理及条件可得,即.,由余弦定理得。.选B。4、C【解析】利用之间的代换判断出对称轴的条数;利用基本不等式求解出到原点的距离最大值;将面积转化为的关系式,然后根据基本不等式求解出最大值;根据满足的不等式判断出四叶草与对应圆的关系,从而判断
9、出面积是否小于.【详解】:当变为时, 不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;:由可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【点睛】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对
10、称性,可通过替换方程中去分析证明.5、A【解析】先利用正弦定理将边统一化为角,然后利用三角函数公式化简,可求出解B.【详解】由正弦定理可得,即,即有,因为,则,而,所以.故选:A【点睛】此题考查了正弦定理和三角函数的恒等变形,属于基础题.6、C【解析】先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C【点睛】此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.7、D【解析】根据折线图依次判断每个选项得到答案.【详解】由绘制出的折线图知:在A中,各月最高气温平均值与最低气
11、温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10的月份有1月,2月,3月,11月,12月,共5个,故C正确;在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误.故选:D.【点睛】本题考查了折线图,意在考查学生的理解能力.8、D【解析】根据双曲线的一条渐近线方程为,列出方程,求出的值即可.【详解】双曲线的一条渐近线方程为,可得,双曲线的离心率.故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.9、B【解析】先解不等式化简两个条件,利用集合法判断
12、充分必要条件即可【详解】解不等式可得,解绝对值不等式可得,由于为的子集,据此可知“”是“”的必要不充分条件故选:B【点睛】本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题.10、A【解析】执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题
13、11、B【解析】根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【详解】如图所示:因为正四棱锥底边边长为,高为,所以 , 到 的距离为,同理到 的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.12、C【解析】先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【详解】所有的情况数有:种,3个数中至少有2个阳数且能构成等差数列的情况有:,共种,所以目标事件的概率.故选:C.【点睛】本题
14、考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】作出不等式组表示的平面区域,将直线进行平移,利用的几何意义,可求出目标函数的最大值。【详解】由,得,作出可行域,如图所示:平移直线,由图像知,当直线经过点时,截距最小,此时取得最大值。由 ,解得 ,代入直线,得。【点睛】本题主要考查简单的线性规划问题的解法平移法。14、【解析】依题意画图,设,根据圆的直径所对的圆周角为直角,可得,通过勾股定理得,再利用两点间的距离公式即可求出,进而
15、得出点坐标.【详解】解:依题意画图,设以为直径的圆被直线所截得的弦长为,且,又因为为圆的直径,则所对的圆周角,则, 则为点到直线:的距离.所以,则.又因为点在直线:上,设,则.解得,则.故答案为: 【点睛】本题考查了直线与圆的位置关系,考查了两点间的距离公式,点到直线的距离公式,是基础题.15、【解析】由题意知,继而利用等比数列的前项和为的公式代入求值即可.【详解】解:由题意知,所以.故答案为:.【点睛】本题考查了等比数列的通项公式和求和公式,属于中档题.16、【解析】对,根据周期的定义判定即可.对,根据偶函数满足的性质判定即可.对,举出反例判定即可.对,求解不等式再判定即可.【详解】解:因为
16、当时, 所以由周期函数的定义知不是函数的周期,故正确;对于定义在上的函数,若,由偶函数的定义知函数不是偶函数,故正确;当时不满足则“”不是“”成立的充分不必要条件,故错误;若实数满足则所以成立,故正确正确命题的序号是故答案为:【点睛】本题主要考查了命题真假的判定,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)根据解析式求得导函数,设切点坐标为,结合导数的几何意义可得方程,构造函数,并求得,由导函数求得有最小值,进而可知由唯一零点,即可代入求得的值;(2)将解析式代入,结合零点定义化简并分离参数得,构造函数,根据题意可知直线与曲线有
17、两个交点;求得并令求得极值点,列出表格判断的单调性与极值,即可确定与有两个交点时的取值范围.【详解】(1)依题意,设切点为,故,故,则;令,故当时,当时,故当时,函数有最小值,由于,故有唯一实数根0,即,则;(2)由,得.所以“在区间上有两个零点”等价于“直线与曲线在有两个交点”;由于.由,解得,.当变化时,与的变化情况如下表所示:30+0极小值极大值所以在,上单调递减,在上单调递增.又因为,故当或时,直线与曲线在上有两个交点,即当或时,函数在区间上有两个零点.【点睛】本题考查了导数的几何意义应用,由切线方程求参数值,构造函数法求参数的取值范围,函数零点的意义及综合应用,属于难题.18、(1)
18、;(2)见解析.【解析】(1)根据题中所给的统计表,利用公式计算出平均数的值,再利用数据之间的关系将、表示为,利用题中所给数据,以及正态分布的概率密度曲线的对称性,求出对应的概率;(2)根据题意,高于平均数和低于平均数的概率各为,再结合得元、元的概率,分析得出话费的可能数据都有哪些,再利用公式求得对应的概率,进而得出分布列,之后利用离散型随机变量的分布列求出其数学期望.【详解】(1)由题意可得,易知,;(2)根据题意,可得出随机变量的可能取值有、元,.所以,随机变量的分布列如下表所示:所以,随机变量的数学期望为.【点睛】本题考查概率的计算,涉及到平均数的求法、正态分布概率的计算以及离散型随机变
19、量分布列及其数学期望,在解题时要弄清楚随机变量所满足的分布列类型,结合相应公式计算对应事件的概率,考查计算能力,属于中等题.19、(1)(答案不唯一)(2)证明见解析【解析】(1)找到一组符合条件的值即可;(2)由可得,整理可得,两边同除可得,再由可得,两边同时加可得,即可得证.【详解】解析:(1)(答案不唯一)(2)证明:由题意可知,因为,所以.所以,即.因为,所以,因为,所以,所以.【点睛】考查不等式的证明,考查不等式的性质的应用.20、(1);(2)见解析.【解析】(1)利用独立事件的概率乘法公式可计算出所求事件的概率;(2)由题意可知随机变量的可能取值有、,计算出随机变量在不同取值下的
20、概率,由此可得出随机变量的分布列.【详解】(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件,则;(2)由题意可知,随机变量的可能取值为、则,故的分布列为【点睛】本题考查概率的计算,同时也考查了随机变量分布列,考查计算能力,属于基础题.21、(1)(2)【解析】(1)先根据平方关系求出,再根据正弦定理即可求出;(2)分别在和中,根据正弦定理列出两个等式,两式相除,利用题目条件即可求出,再根据余弦定理求出,即可根据求出的面积【详解】(1)由,得,所以.由正弦定理得,即,得.(2)由正弦定理,在中,在中,又,由得,由余弦定理得,即,解得,所以的面积.【点睛】本题主要考查正余弦定理在解三角
21、形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于基础题22、(1)16;(2)115.【解析】(1)易得使得的情况只有“”,“”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.(2)易得“”共有种,“”共有种.再根据古典概型的方法可知,利用组合数的计算公式可得,当时根据题意有,共个;当时求得,再根据换元根据整除的方法求解满足的正整数对即可.【详解】解:(1)三个数乘积为有两种情况:“”,“”,其中“”共有:种,“”共有:种,利用分类计数原理得:为“数列”中的任意三项,则使得的取法有:种(2)与(1)同理,“”共有种,“”共有种,而在“数列”中任取三项共有种,根据古典概型有:,再根据组合数的计算公式能得到:,时,应满足,共个,时,应满足,视为常数,可解得, ,根据可知,根据可知,(否则),下设,则由于为正整数知必为正整数,化简上式关系式可以知道:,均为偶数,设,则,由于中必存在偶数,只需中存在数为的倍数即可,检验: 符合题意,共有个, 综上所述:共有个数对符合题意【点睛】本题主要考查了排列组合的基本方法,同时也考查了组合数的运算以及整数的分析方法等,需要根据题意