江苏省江阴市暨阳中学2023届高三第一次调研测试数学试卷含解析.doc

上传人:茅**** 文档编号:88304455 上传时间:2023-04-25 格式:DOC 页数:23 大小:2.78MB
返回 下载 相关 举报
江苏省江阴市暨阳中学2023届高三第一次调研测试数学试卷含解析.doc_第1页
第1页 / 共23页
江苏省江阴市暨阳中学2023届高三第一次调研测试数学试卷含解析.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《江苏省江阴市暨阳中学2023届高三第一次调研测试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省江阴市暨阳中学2023届高三第一次调研测试数学试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,则下列结论中正确的是函数的最小正周期为;函数的图象是轴对称图形;函数的极大值为;函数的最小值为ABCD2某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,

2、则该几何体中最长的棱长为( )ABC1D3很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为( )ABCD4在中,为上异于,的任一点,为的中点,若,则等于( )ABCD5设i为数单位,为z的共轭复数,若,则( )ABCD6将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的

3、值域是( )ABCD7在直角中,若,则( )ABCD8已知复数,其中,是虚数单位,则( )ABCD9在边长为2的菱形中,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为( )ABCD10下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( )A16B17C18D1911已知定义在R上的函数(m为实数)为偶函数,记,则a,b,c的大小关系为( )ABCD12小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到

4、达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,在区间上随机取一个数,则使得0的概率为 14已知函数对于都有,且周期为2,当时,则_.15有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则对应的排法有_种; _;16在棱长为6的正方体中,是的中点,点是面,所在平面内的动点,且满足,则三棱锥的体积的最大值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构

5、造数表M,与数表;记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,).记数表中位于第i行第j列的元素为,其中(,).如:,.(1)设,请计算,;(2)设,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;(3)设,对于整数t,t不属于数表M,求t的最大值.18(12分)已知函数有两个零点.(1)求的取值范围;(2)是否存在实数, 对于符合题意的任意,当 时均有?若存在,求出所有的值;若不存在,请说明理由19(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所(1)求甲、乙、丙三名同学都选高校的概率;(

6、2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望20(12分)已知函数,为实数,且()当时,求的单调区间和极值;()求函数在区间,上的值域(其中为自然对数的底数)21(12分)如图1,已知四边形BCDE为直角梯形,且,A为BE的中点将沿AD折到位置如图,连结PC,PB构成一个四棱锥()求证;()若平面求二面角的大小;在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值22(10分

7、)为响应“坚定文化自信,建设文化强国”,提升全民文化修养,引领学生“读经典用经典”,某广播电视台计划推出一档“阅读经典”节目.工作人员在前期的数据采集中,在某高中学校随机抽取了120名学生做调查,统计结果显示:样本中男女比例为3:2,而男生中喜欢阅读中国古典文学和不喜欢的比例是7:5,女生中喜欢阅读中国古典文学和不喜欢的比例是5:3.(1)填写下面列联表,并根据联表判断是否有的把握认为喜欢阅读中国古典文学与性别有关系?男生女生总计喜欢阅读中国古典文学不喜欢阅读中国古典文学总计(2)为做好文化建设引领,实验组把该校作为试点,和该校的学生进行中国古典文学阅读交流.实验人员已经从所调查的120人中筛

8、选出4名男生和3名女生共7人作为代表,这7个代表中有2名男生代表和2名女生代表喜欢中国古典文学.现从这7名代表中任选3名男生代表和2名女生代表参加座谈会,记为参加会议的人中喜欢古典文学的人数,求5的分布列及数学期望附表及公式:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】因为,所以不正确;因为,所以,所以,所以函数的图象是轴对称图形,正确;易知函数的最小正周期为,因为函数的图象关于直线对称,所以只需研究函数在上的极大值与最小值即可当时,且,令,得,可知函数在处取得极大值为,正确;因为,所以,所以函数的最小值为,正确

9、故选D2、B【解析】首先由三视图还原几何体,进一步求出几何体的棱长【详解】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为故选:B【点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题3、B【解析】根据程序框图列举出程序的每一步,即可得出输出结果.【详解】输入,不成立,是偶数成立,则,;不成立,是偶数不成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;成立,跳出循环,输出i的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.4、A【解析】根据题意,用表示出与,

10、求出的值即可.【详解】解:根据题意,设,则,又,故选:A.【点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.5、A【解析】由复数的除法求出,然后计算【详解】,故选:A.【点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键6、D【解析】由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,函数.在上,故,即的值域是,故选:D.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中

11、档题7、C【解析】在直角三角形ABC中,求得 ,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值【详解】在直角中,若,则 故选C.【点睛】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题8、D【解析】试题分析:由,得,则,故选D.考点:1、复数的运算;2、复数的模.9、D【解析】取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.【详解】如图,由题意易知与均为正三角形,取AC中点N,连接

12、BN,DN,则,即为二面角的平面角,过点B作于O,则平面ACD,由,可得,即点O为的中心,三棱锥的外接球球心在直线BO上,设球心为,半径为,,解得,三棱锥的外接球的表面积为.故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.10、B【解析】由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.【详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.若输出 ,则不符合题意,排除;若输出,则,符合题意.故选:B.【点睛】本题考查了程序框图.当循环的次数不多,或有规律时

13、,常采用循环模拟或代入选项验证的方法进行解答.11、B【解析】根据f(x)为偶函数便可求出m0,从而f(x)1,根据此函数的奇偶性与单调性即可作出判断.【详解】解:f(x)为偶函数;f(x)f(x);11;|xm|xm|;(xm)2(xm)2;mx0;m0;f(x)1;f(x)在0,+)上单调递增,并且af(|)f(),bf(),cf(2);02;acb故选B【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间0,+)上,根据单调性去比较函数值大小12、D【解析】这是几何概型,画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应

14、位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:可以得出,所以在区间上使的范围为,所以使得0的概率为考点:本小题主要考查与长度有关的几何概型的概率计算.点评:几何概型适用于解决一切均匀分布的问题,包括“长度”、“角度”、“面积”、“体积”等,但要注意求概率时做比的上下“测度”要一致.14、【解析】利用,且周期为2,可得,得.【详解】,且周期为2,又当时,故答案为:【点睛】本题考查函数的周期性与对称性的应用,考查转化能力,属于基础题.15、36 ;1. 【解析】的可能取值为0,1,2,3,对应的排法有:.分别

15、求出,由此能求出.【详解】解:有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则的可能取值为0,1,2,3,对应的排法有:.对应的排法有36种;,故答案为:36;1.【点睛】本题考查了排列、组合的应用,离散型随机变量的分布列以及数学期望,属于中档题.16、【解析】根据与相似,过作于,利用体积公式求解OP最值,根据勾股定理得出,利用函数单调性判断求解即可.【详解】在棱长为6的正方体中,是的中点,点是面所在平面内的动点,且满足,又,与相似,即,过作于,设,化简得:,根据函数单调性判断,时,取得最大值36,在正方体中平面.三棱锥体积的最大值为【点睛】本题考查三角形相似,几何

16、体体积以及函数单调性的综合应用,难度一般.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析(3)29【解析】(1)将,代入,可求出,可代入求,可求结果(2)可求,通过反证法证明,(3)可推出,的最大值,就是集合中元素的最大值,求出【详解】(1)由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,则,得,故(2)证明:已知,由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,得,所以若,则存在,使,若,则存在,使,因此,对于正整数,考虑集合,即,下面证明:集合中至少有一元素是7的倍数反证法:假设集合中任何一个元素,都不是7的倍数,则集合中每

17、一元素关于7的余数可以为1,2,3,4,5,6,又因为集合中共有7个元素,所以集合中至少存在两个元素关于7的余数相同,不妨设为,其中,则这两个元素的差为7的倍数,即,所以,与矛盾,所以假设不成立,即原命题成立即集合中至少有一元素是7的倍数,不妨设该元素为,则存在,使,即,由已证可知,若,则存在,使,而,所以为负整数,设,则,且,所以,当,时,对于整数,若,则成立(3)下面用反证法证明:若对于整数,则,假设命题不成立,即,且则对于整数,存在,使成立,整理,得,又因为,所以且是7的倍数,因为,所以,所以矛盾,即假设不成立所以对于整数,若,则,又由第二问,对于整数,则,所以的最大值,就是集合中元素的

18、最大值,又因为,所以【点睛】本题考查数列的综合应用,以及反证法,求最值,属于难题18、 (1);(2).【解析】(1)对求导,对参数进行分类讨论,根据函数单调性即可求得.(2)先根据,得,再根据零点解得,转化不等式得,令,化简得,因此 ,最后根据导数研究对应函数单调性,确定对应函数最值,即得取值集合.【详解】(1),当时,对恒成立,与题意不符,当,时,即函数在单调递增,在单调递减,和时均有,解得:,综上可知:的取值范围;(2)由(1)可知,则,由的任意性及知,且,故,又,令,则,且恒成立,令,而,时,时,令,若,则时,即函数在单调递减,与不符;若,则时,即函数在单调递减,与式不符;若,解得,此

19、时恒成立,即函数在单调递增,又,时,;时,符合式,综上,存在唯一实数符合题意.【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.19、(1) (2)(i)(ii)分布列见解析,【解析】(1)先计算甲、乙、丙同学分别选择D高校的概率,利用事件的独立性即得解;(2)(i)分别计算每个事件的概率,再利用事件的独立性即得解;(ii),利用事件的独立性,分别计算对应的概率,列出分布列,计算数学期望即得解.【详解】(1)甲从五所高校中任选2所,共有共10

20、种情况,甲、乙、丙同学都选高校,共有四种情况,甲同学选高校的概率为,因此乙、丙两同学选高校的概率为,因为每位同学彼此独立,所以甲、乙、丙三名同学都选高校的概率为(2)(i)甲同学必选校且选高校的概率为,乙未选高校的概率为,丙未选高校的概率为,因为每位同学彼此独立,所以甲同学选高校且乙、丙都未选高校的概率为(ii),因此,即的分布列为0123因此数学期望为【点睛】本题考查了事件独立性的应用和随机变量的分布列和期望,考查了学生综合分析,概念理解,实际应用,数学运算的能力,属于中档题.20、()极大值0,没有极小值;函数的递增区间,递减区间,()见解析【解析】()由,令,得增区间为,令,得减区间为,

21、所以有极大值,无极小值;()由,分,和三种情况,考虑函数在区间上的值域,即可得到本题答案.【详解】当时,当时,函数单调递增,当时,函数单调递减,故当时,函数取得极大值,没有极小值;函数的增区间为,减区间为,当时,在上单调递增,即函数的值域为;当时,在上单调递减, 即函数的值域为;当时,易得时,在上单调递增,时,在上单调递减,故当时,函数取得最大值,最小值为,中最小的,当时,最小值;当,最小值;综上,当时,函数的值域为,当时,函数的值域,当时,函数的值域为,当时,函数的值域为.【点睛】本题主要考查利用导数求单调区间和极值,以及利用导数研究含参函数在给定区间的值域,考查学生的运算求解能力,体现了分

22、类讨论的数学思想.21、详见解析;,或【解析】可以通过已知证明出平面PAB,这样就可以证明出;以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,可以求出相应点的坐标,求出平面PBC的法向量为、平面PCD的法向量,利用空间向量的数量积,求出二面角的大小;求出平面PBC的法向量,利用线面角的公式求出的值.【详解】证明:在图1中,为平行四边形,当沿AD折起时,即,又,平面PAB,又平面PAB,解:以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,由于平面ABCD则0,0,1,0,1,1,1,0,设平面PBC的法向量为y,则,取,得0,设平面PCD的

23、法向量b,则,取,得1,设二面角的大小为,可知为钝角,则,二面角的大小为设AM与面PBC所成角为,0,1,平面PBC的法向量0,直线AM与平面PBC所成的角为,解得或【点睛】本题考查了利用线面垂直证明线线垂直,考查了利用向量数量积,求二面角的大小以及通过线面角公式求定比分点问题.22、(1)见解析,没有(2)见解析,【解析】(1)根据题目所给数据填写列联表,计算出的值,由此判断出没有的把握认为喜欢阅读中国古典文学与性别有关系.(2)先判断出的所有可能取值,然后根据古典概型概率计算公式,计算出分布列并求得数学期望.【详解】(1)男生女生总计喜欢阅读中国古典文学423072不喜欢阅读中国古典文学301848总计7248120所以,没有的把握认为喜欢阅读中国古典文学与性别有关系.(2)设参加座谈会的男生中喜欢中国古典文学的人数为,女生中喜欢古典文学的人数为,则.且;.所以的分布列为则.【点睛】本小题主要考查列联表独立性检验,考查随机变量分布列和数学期望的求法,考查数据处理能力,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁