江苏省南京市新城中学2023年毕业升学考试模拟卷数学卷含解析.doc

上传人:茅**** 文档编号:88304124 上传时间:2023-04-25 格式:DOC 页数:18 大小:919.50KB
返回 下载 相关 举报
江苏省南京市新城中学2023年毕业升学考试模拟卷数学卷含解析.doc_第1页
第1页 / 共18页
江苏省南京市新城中学2023年毕业升学考试模拟卷数学卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《江苏省南京市新城中学2023年毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南京市新城中学2023年毕业升学考试模拟卷数学卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1设a,b是常数,不等式的解集为,则关于x的不等式的解集是( )ABCD2若关于,的二元一次方程组的解也是二元一次方程的解,则的值为ABCD3|3|的值是( )A3BC3D4如图图

2、形中是中心对称图形的是()ABCD5如图,在直角坐标系中,等腰直角ABO的O点是坐标原点,A的坐标是(4,0),直角顶点B在第二象限,等腰直角BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()Ay=2x+1By=x+2Cy=3x2Dy=x+262018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是()A29.8109B2.98109C2.981010D0.29810107某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=4x+440,要获得最大利润,该商

3、品的售价应定为A60元 B70元 C80元 D90元8已知二次函数(为常数),当时,函数的最小值为5,则的值为()A1或5B1或3C1或5D1或39如图,中,且,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的ABCD101的相反数是()A1B1CD1二、填空题(本大题共6个小题,每小题3分,共18分)11计算(+)(-)的结果等于_.12分解因式:=.13因式分解:3a2-6a+3=_14观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有_个.15如图,若1+2=180,3=110,则4= 16如图,在四边形ABCD中,ABAD,BADBCD

4、90,连接AC、BD,若S四边形ABCD18,则BD的最小值为_三、解答题(共8题,共72分)17(8分)中华文化,源远流长,在文学方面,西游记、三国演义、水浒传、红楼梦是我国古代长篇小说中的典型代表,被称为“四大古典名著”某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查了 名学生,扇形统计图中“1部”所在扇形的圆心角为 度,并补全条形统计图;(2)此中学共有1600名学生,通过计算预估其中4部都读完了的学生人数;(3)没有读过四大古典名著的两名

5、学生准备从四大固定名著中各自随机选择一部来阅读,求他们选中同一名著的概率18(8分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.求点B的坐标;若ABC的面积为4,求的解析式19(8分)顶点为D的抛物线yx2+bx+c交x轴于A、B(3,0),交y轴于点C,直线yx+m经过点C,交x轴于E(4,0)求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y

6、x+m于G,交抛物线于H,连接CH,将CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标20(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB2m,它的影子BC1.6m,木竿PQ落在地面上的影子PM1.8m,落在墙上的影子MN1.1m,求木竿PQ的长度21(8分)如图,将连续的奇数1,3,5,7按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示(1)计算:若十字框的中间数为17,则a+b+c+d=_(2)发现:移动十字框,比较a+b+c+d与中间的数猜想:十字框中a、b、c、d的和是中间

7、的数的_;(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由22(10分)用你发现的规律解答下列问题计算 探究 (用含有的式子表示)若的值为,求的值23(12分)阅读下列材料,解答下列问题:材料1把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程公式法(平方差公式、完全平方公式)是因式分解的一种基本方法如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全

8、平方式但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x2+2ax3a2x2+2ax+a2a23a2(x+a)2(2a)2(x+3a)(xa)材料2因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+yA,则原式A2+2A+1(A+1)2再将“A”还原,得:原式(x+y+1)2上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把c26c+8分解因式;(2)结合材料1和材料2完成下面小题:分解因式:(ab)2+2(ab)

9、+1;分解因式:(m+n)(m+n4)+324在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据不等式的解集为x 即可判断a,b的符号,则根据a,b的符号,即可解不等式bx-a0【详解】解不等式,移项得: 解集为x ,且a0, 解不等式,移

10、项得:bxa两边同时除以b得:x,即x- 故选C【点睛】此题考查解一元一次不等式,掌握运算法则是解题关键2、B【解析】将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值【详解】解:,得:,即,将代入得:,即,将,代入得:,解得:故选:【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值3、A【解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数, 故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.4、B【解析】把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的

11、图形重合,那么这个图形叫做中心对称图形.【详解】解:根据中心对称图形的定义可知只有B选项是中心对称图形,故选择B.【点睛】本题考察了中心对称图形的含义.5、D【解析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式【详解】当BC与x轴平行时,过B作BEx轴,过D作DFx轴,交BC于点G,如图1所示等腰直角ABO的O点是坐标原点,A的坐标是(4,0),AO=4,BC=BE=AE=EO=GF=OA=1,OF=DG=BG=C

12、G=BC=1,DF=DG+GF=3,D坐标为(1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k0),将两点坐标代入得:,解得:则这条直线解析式为y=x+1故选D【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键6、B【解析】根据科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,且为这个数的整数位数减1,由此即可解答【详解】29.8亿用科学记数法表示为: 29.8亿=29800000002.981故选B【点睛】本题考查了

13、科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7、C【解析】设销售该商品每月所获总利润为w,则w=(x50)(4x+440)=4x2+640x22000=4(x80)2+3600,当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C8、A【解析】由解析式可知该函数在x=h时取得最小值1,xh时,y随x的增大而增大;当xh时,y随x的增大而减小;根据1x3时,函数的最小值为5可分如下两种情况:若h3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可【详解】解:xh

14、时,y随x的增大而增大,当xh时,y随x的增大而减小,若h3,当时,y随x的增大而减小,当x=3时,y取得最小值5,可得:,解得:h=5或h=1(舍),h=5,若1h3时,当x=h时,y取得最小值为1,不是5,此种情况不符合题意,舍去综上所述,h的值为1或5,故选:A【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键9、D【解析】RtAOB中,ABOB,且AB=OB=3,所以很容易求得AOB=A=45;再由平行线的性质得出OCD=A,即AOD=OCD=45,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择

15、图象【详解】解:RtAOB中,ABOB,且AB=OB=3,AOB=A=45,CDOB,CDAB,OCD=A,AOD=OCD=45,OD=CD=t,SOCD=ODCD=t2(0t3),即S=t2(0t3)故S与t之间的函数关系的图象应为定义域为0,3,开口向上的二次函数图象;故选D【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象10、B【解析】根据相反数的的定义解答即可.【详解】根据a的相反数为-a即可得,1的相反数是1.故选B.【点睛】本题考查了相反数的定义,熟知相反数的定义是解决问题的

16、关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】利用平方差公式进行计算即可得.【详解】原式=5-3=2,故答案为:2.【点睛】本题考查了二次根式的混合运算,掌握平方差公式结构特征是解本题的关键.12、【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,先提取公因式后继续应用平方差公式分解即可:。13、3(a1)2【解析】先提公因式,再套用完全平方公式.【详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.【点睛】考点:提公因

17、式法与公式法的综合运用14、【解析】分别求出第1个、第2个、第3个、第4个图形中的个数,得到第5个图形中的个数,进而找到规律,得出第n个图形中的个数,即可求解【详解】第1个图形中有1+31=4个,第2个图形中有1+32=7个,第3个图形中有1+33=10个,第4个图形中有1+34=13个,第5个图形中有1+35=16个,第n个图形中有1+3n=(3n+1)个故答案是:1+3n.【点睛】考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中的个数与n的关系是解决本题的关键15、110【解析】解:1+2=180,ab,3=4,又3=110,4=110故答案为11016、6【解

18、析】过A作AMCD于M,过A作ANBC于N,先根据“AAS”证明DAMBAN,再证明四边形AMCN为正方形,可求得AC=6,从而当BDAC时BD最小,且最小值为6.【详解】如下图,过A作AMCD于M,过A作ANBC于N,则MAN90,DAMBAM90,BAMBAN90,DAMBAN.DMAN90,ABAD,DAMBAN,AMAN,四边形AMCN为正方形,S四边形ABCDS四边形AMCNAC2,AC=6,BDAC时BD最小,且最小值为6.故答案为:6.【点睛】本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键.三、解答题(共8题,共72分)17、(1)40、12

19、6(2)240人(3) 【解析】(1)用2部的人数10除以2部人数所占的百分比25即可求出本次调查的学生数,根据扇形圆心角的度数=部分占总体的百分比360,即可得到“1部”所在扇形的圆心角;(2)用1600乘以4部所占的百分比即可;(3)根据树状图所得的结果,判断他们选中同一名著的概率【详解】(1)调查的总人数为:1025%=40,1部对应的人数为4021086=14,则扇形统计图中“1部”所在扇形的圆心角为:360=126;故答案为40、126;(2)预估其中4部都读完了的学生有1600=240人;(3)将西游记、三国演义、水浒传、红楼梦分别记作A,B,C,D,画树状图可得:共有16种等可能

20、的结果,其中选中同一名著的有4种,故P(两人选中同一名著)=【点睛】本题考查了扇形统计图和条形统计图的综合,用样本估计总体,列表法或树状图法求概率.解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.18、(1)(0,3);(2)【解析】(1)在RtAOB中,由勾股定理得到OB=3,即可得出点B的坐标;(2)由=BCOA,得到BC=4,进而得到C(0,-1)设的解析式为, 把A(2,0),C(0,-1)代入即可得到的解析式【详解】(1)在RtAOB中,OB=3,点B的坐标是(0,

21、3) (2)=BCOA,BC2=4,BC=4,C(0,-1)设的解析式为, 把A(2,0),C(0,-1)代入得:,的解析式为是考点:一次函数的性质19、 (1)yx2+2x+3;(2)S(x)2+;当x时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出C

22、GHG,列等式求解即可【详解】(1)将点E代入直线解析式中,04+m,解得m3,解析式为yx+3,C(0,3),B(3,0),则有,解得,抛物线的解析式为:yx2+2x+3;(2)yx2+2x+3(x1)2+4,D(1,4),设直线BD的解析式为ykx+b,代入点B、D,解得,直线BD的解析式为y2x+6,则点M的坐标为(x,2x+6),S(3+62x)x(x)2+,当x时,S有最大值,最大值为(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,t+3),H(t,t2+2t+3),HG|t2+2t+3(t+3)|t2t|CGt,CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HGy

23、轴,HGCF,HGHF,CGCF,GHCCHF,FCHCHG,FCHFHC,GCHGHC,CGHG,|t2t|t,当t2tt时,解得t10(舍),t24,此时点P(4,0)当t2tt时,解得t10(舍),t2,此时点P(,0)综上,点P的坐标为(4,0)或(,0)【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CGHG为解题关键20、木竿PQ的长度为3.35米【解析】过N点作NDPQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长试题解析:【详解】解:过N点

24、作NDPQ于D,则四边形DPMN为矩形,DNPM1.8m,DPMN1.1m,QD2.25,PQQDDP 2.251.13.35(m)答:木竿PQ的长度为3.35米【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键21、(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.【解析】(1)直接相加即得到答案; (2)根据(1)猜想a+b+c+d=4x; (3)用x表示a、b、c、d,相加后即等于4x; (4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1【详解】(1)5+15+19+29=68,故答

25、案为68;(2)根据(1)猜想a+b+c+d=4x,答案为:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,a+b+c+d=x-12+x-2+x+2+x+12=4x,猜想正确;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整个数表所有的数都为奇数,故不成立,M的值不能等于1【点睛】本题考查了一元一次方程的应用当解得方程的解后,要观察是否满足题目和实际要求再进行取舍22、解:(1);(2);(3)n=17.【解析】(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行

26、展开,然后列出关于n的一元一次方程,从而得出n的值.【详解】(1)原式=1+=1=.故答案为; (2)原式=1+=1=故答案为; (3) += (1+)=(1)=解得:n=17.考点:规律题.23、(1)(c-4)(c-2);(2)(a-b+1)2;(m+n-1)(m+n-3).【解析】(1)根据材料1,可以对c2-6c+8分解因式;(2)根据材料2的整体思想可以对(a-b)2+2(a-b)+1分解因式;根据材料1和材料2可以对(m+n)(m+n-4)+3分解因式【详解】(1)c2-6c+8 =c2-6c+32-32+8 =(c-3)2-1 =(c-3+1)(c-3+1)=(c-4)(c-2)

27、;(2)(a-b)2+2(a-b)+1 设a-b=t,则原式=t2+2t+1=(t+1)2,则(a-b)2+2(a-b)+1=(a-b+1)2;(m+n)(m+n-4)+3 设m+n=t,则t(t-4)+3 =t2-4t+3 =t2-4t+22-22+3 =(t-2)2-1 =(t-2+1)(t-2-1)=(t-1)(t-3),则(m+n)(m+n-4)+3=(m+n-1)(m+n-3)【点睛】本题考查因式分解的应用,解题的关键是明确题意,可以根据材料中的例子对所求的式子进行因式分解24、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x万元,每台电子白

28、板y万元,根据题意得:,解得:。答:每台电脑0.5万元,每台电子白板1.5万元。(2)设需购进电脑a台,则购进电子白板(30a)台,则,解得:,即a=15,16,17。故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为万元;方案二:购进电脑16台,电子白板14台.总费用为万元;方案三:购进电脑17台,电子白板13台总费用为万元。方案三费用最低。(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁