梧州市重点中学2023年中考数学考试模拟冲刺卷含解析.doc

上传人:茅**** 文档编号:88303834 上传时间:2023-04-25 格式:DOC 页数:18 大小:761.50KB
返回 下载 相关 举报
梧州市重点中学2023年中考数学考试模拟冲刺卷含解析.doc_第1页
第1页 / 共18页
梧州市重点中学2023年中考数学考试模拟冲刺卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《梧州市重点中学2023年中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《梧州市重点中学2023年中考数学考试模拟冲刺卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,在四边形ABCD中,如果ADC=BAC,那么下列条件中不能判定ADC和BAC相似的是()ADAC=ABCBAC是BCD的平分线CAC2=BCCDD2如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反

2、弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是()A(1,4)B(4,3)C(2,4)D(4,1)3一个多边形的边数由原来的3增加到n时(n3,且n为正整数),它的外角和()A增加(n2)180B减小(n2)180C增加(n1)180D没有改变4下列式子中,与互为有理化因式的是()ABCD5如图,正方形ABCD中,AB=6,G是BC的中点将ABG沿AG对折至AFG,延长GF交DC于点E,则DE的长是 ( )A1B1.5C2D2.56若正多边形的一个内角是150,则该正多边形的边数

3、是( )A6 B12 C16 D187已知抛物线y=(x)(x)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+M2018N2018的值是()ABCD8下列图形中为正方体的平面展开图的是()ABCD9如图,ABCD,点E在线段BC上,若140,230,则3的度数是()A70B60C55D5010若x2y+10,则2x4y8等于()A1B4C8D16二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE

4、的长为_12钓鱼岛周围海域面积约为170000平方千米,170000用科学记数法表示为_13反比例函数的图象经过点和,则 _ 14如图,在圆心角为90的扇形OAB中,半径OA=1cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为_cm115如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚

5、回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_米16已知是方程组的解,则ab的值是_三、解答题(共8题,共72分)17(8分)如图 1,在等腰ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD在线段 AD 上任取一点 P,连接 PB,PE若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+PE=y小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究 下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:x01234

6、56y5.2 4.24.65.97.69.5说明:补全表格时,相关数值保留一位小数(参考数据:1.414,1.732,2.236)(2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置18(8分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CEx轴于点E,tanABO=,OB=4,OE=1(1)求直线AB和反比例函数的解析式;(1)求OCD的面积19(8分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要

7、由塔杆和叶片组成(如图1),图2是从图1引出的平面图假设你站在A处测得塔杆顶端C的仰角是55,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BGHG,CHAH,求塔杆CH的高(参考数据:tan551.4,tan350.7,sin550.8,sin350.6)20(8分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB求证:ABE=EAD;若AEB=2ADB,求证:四边形ABCD是菱形21(8分)请你仅用无刻

8、度的直尺在下面的图中作出ABC 的边 AB 上的高 CD如图,以等边三角形 ABC 的边 AB 为直径的圆,与另两边 BC、AC 分别交于点 E、F如图,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E22(10分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角BAE=68,新坝体的高为DE,背水坡坡角DCE=60.求工程完工后背水坡底端水平方向增加的宽度AC(结果精确到0.1米,参考数据:sin

9、 680.93,cos 680.37,tan 682.5,1.73)23(12分)如图,直线y=x+2与抛物线y=ax2+bx+6(a0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PCx轴于点D,交抛物线于点C(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若PAC为直角三角形,直接写出此时点P的坐标24如图,AB是O的直径,BC交O于点D,E是弧的中点,AE与BC交于点F,C=2EAB求证:AC是O的切线;已知CD=4,CA=6,求AF的长参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】结合图形,逐项进行分析即可.【详解

10、】在ADC和BAC中,ADC=BAC,如果ADCBAC,需满足的条件有:DAC=ABC或AC是BCD的平分线;,故选C【点睛】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.2、D【解析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.3、D【解析】根据多边形的外角和等于360,与边数无关即可解答.【详解】多边形的外角和等于360,与边数无关,一个多边形的边数由3增加到n

11、时,其外角度数的和还是360,保持不变故选D【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360是解题的关键.4、B【解析】直接利用有理化因式的定义分析得出答案【详解】()(,)=122,=10,与互为有理化因式的是:,故选B【点睛】本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.5、C【解析】连接AE,根据翻折变换的性质和正方形的性质可证RtAFERtADE,在直角ECG中,根据勾股定理求出DE的长.【详解】

12、连接AE,AB=AD=AF,D=AFE=90,由折叠的性质得:RtABGRtAFG,在AFE和ADE中,AE=AE,AD=AF,D=AFE,RtAFERtADE,EF=DE,设DE=FE=x,则CG=3,EC=6x.在直角ECG中,根据勾股定理,得:(6x)2+9=(x+3)2,解得x=2.则DE=2.【点睛】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.6、B【解析】设多边形的边数为n,则有(n-2)180=n150,解得:n=12,故选B.7、C【解析】代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+M2018N2018中即可求出结论【详

13、解】解:当y=0时,有(x-)(x-)=0,解得:x1=,x2=,MaNa=-,M1N1+M2N2+M2018N2018=1-+-+-=1-=故选C【点睛】本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键8、C【解析】利用正方体及其表面展开图的特点依次判断解题【详解】由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C【点睛】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键9、A【解析】试题分析:ABCD,

14、1=40,1=30,C=403是CDE的外角,3=C+2=40+30=70故选A考点:平行线的性质10、B【解析】先把原式化为2x22y23的形式,再根据同底数幂的乘法及除法法则进行计算即可【详解】原式2x22y23,2x2y+3,22,1故选:B【点睛】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x22y23的形式是解答此题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、或10 【解析】试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:如图,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2

15、,设FE=x,则FE=x,QE=4-x,在RtEQF中,(4-x)2+22=x2,所以x=(2)如图,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在RtEQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.12、【解析】解:将170000用科学记数法表示为:1.71故答案为1.7113、-1【解析】先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值【详解】解:反比例函数y=的图象经过点(1,6),6=,

16、解得k=6,反比例函数的解析式为y=点(m,-3)在此函数图象上上,-3=,解得m=-1故答案为-1【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键14、+【解析】试题分析:如图,连接OC,EC,由题意得OCDOCE,OCDE,DE=,所以S四边形ODCE=1=,SOCD=,又SODE=11=,S扇形OBC=,所以阴影部分的面积为:S扇形OBC+SOCDSODE=+;故答案为考点:扇形面积的计算15、5200【解析】设甲到学校的距离为x米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/

17、分钟),依题意得: 解得 所以甲到学校距离为2400米,乙到学校距离为6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息16、4; 【解析】试题解析:把代入方程组得:,2-得:3a=9,即a=3,把a=3代入得:b=-1,则a-b=3+1=4,三、解答题(共8题,共72分)17、(1)4.5(2)根据数据画图见解析;(3)函数 y 的最小值为4.2,线段AD上靠近D点三等分点处.【解析】(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为

18、4.2,此时点 P 在图 1 中的位置为线段 AD 上靠近 D 点三等分点处.【详解】(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数 y 的最小值为 4.2,此时点 P 在图 1 中的位置为线段 AD 上靠近 D 点三等分点处.【点睛】本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.18、(1),;(1)2【解析】试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;(1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解试题解析:(1)OB=4,OE=1

19、,BE=1+4=3CEx轴于点E,tanABO=,OA=1,CE=3,点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,m=3该反比例函数的解析式为;(1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,1),则BOD的面积=411=1,BOD的面积=431=3,故OCD的面积为1+3=2考点:反比例函数与一次函数的交点问题19、1米【解析】试题分析:作BEDH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=A

20、HtanCAH=tan55x知CE=CHEH=tan55x10,根据BE=DE可得关于x的方程,解之可得试题解析:解:如图,作BEDH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在RtACH中,CH=AHtanCAH=tan55x,CE=CHEH=tan55x10,DBE=45,BE=DE=CE+DC,即43+x=tan55x10+35,解得:x45,CH=tan55x=1.445=1答:塔杆CH的高为1米点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形20、(1)证明见解析;(2)证明见解析【解析】(1)根

21、据平行四边形的对边互相平行可得ADBC,再根据两直线平行,内错角相等可得AEB=EAD,根据等边对等角可得ABE=AEB,即可得证(2)根据两直线平行,内错角相等可得ADB=DBE,然后求出ABD=ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可【详解】证明:(1)在平行四边形ABCD中,ADBC,AEB=EADAE=AB,ABE=AEBABE=EAD(2)ADBC,ADB=DBEABE=AEB,AEB=2ADB,ABE=2ADBABD=ABEDBE=2ADBADB=ADBAB=AD又四边形ABCD是平行四边形,四边形ABCD是菱形21、(1)详见解析;(2)

22、详见解析.【解析】(1)连接AE、BF,找到ABC的高线的交点,据此可得CD;(2)延长CB交圆于点F,延长AF、EB交于点G,连接CG,延长AB交CG于点D,据此可得【详解】(1)如图所示,CD 即为所求;(2)如图,CD 即为所求【点睛】本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质22、工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.【解析】解:在RtBAE中,BAE=680,BE=162米,(米)在RtDEC中,DGE=600,DE=176.6米,(米)(米)工程完工后背水坡底端水平方向增加的宽度AC约为37.3米在RtBAE和RtD

23、EC中,应用正切函数分别求出AE和CE的长即可求得AC的长23、(1)(4,6);y=1x18x+6(1);(3)点P的坐标为(3,5)或()【解析】(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值(1)要弄清PC的长,实际是直线AB与抛物线函数值的差可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,

24、可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论.【详解】解:(1)B(4,m)在直线y=x+1上,m=4+1=6,B(4,6),故答案为(4,6);A(,),B(4,6)在抛物线y=ax1+bx+6上,解得,抛物线的解析式为y=1x18x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n18n+6),PC=(n+1)(1n18n+6),=1n1+9n4,=1(n)1+,PC0,当n=时,线段PC最大且为(3)PAC为直角三角形,i)若点P为直角顶点,则APC=90由题意易知,PCy轴,APC=45,因此这种情形不存在;ii

25、)若点A为直角顶点,则PAC=90如图1,过点A(,)作ANx轴于点N,则ON=,AN=过点A作AM直线AB,交x轴于点M,则由题意易知,AMN为等腰直角三角形,MN=AN=,OM=ON+MN=+=3,M(3,0)设直线AM的解析式为:y=kx+b,则:,解得,直线AM的解析式为:y=x+3 又抛物线的解析式为:y=1x18x+6 联立式,解得:或(与点A重合,舍去),C(3,0),即点C、M点重合当x=3时,y=x+1=5,P1(3,5);iii)若点C为直角顶点,则ACP=90y=1x18x+6=1(x1)11,抛物线的对称轴为直线x=1如图1,作点A(,)关于对称轴x=1的对称点C,则点

26、C在抛物线上,且C(,)当x=时,y=x+1=P1(,)点P1(3,5)、P1(,)均在线段AB上,综上所述,PAC为直角三角形时,点P的坐标为(3,5)或(,)【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.24、(1)证明见解析(2)2【解析】(1)连结AD,如图,根据圆周角定理,由E是的中点得到由于则,再利用圆周角定理得到则所以于是根据切线的判定定理得到AC是O的切线;先求出的长,用勾股定理即可求出.【详解】解:(1)证明:连结AD,如图,E是的中点, AB是O的直径, 即 AC是O的切线;(2) ,【点睛】本题考查切线的判定与性质,圆周角定理,属于圆的综合题,注意切线的证明方法,是高频考点.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁