《工序(过程)质量控制.pptx》由会员分享,可在线阅读,更多相关《工序(过程)质量控制.pptx(56页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 第八章第八章 工序(过程)质量操作工序(过程)质量操作第一节第一节 工序质量的受控状态工序质量的受控状态第二节第二节 工序能力和工序能力指数工序能力和工序能力指数第三节第三节 工序质量操作图工序质量操作图第四节第四节 实施实施统计过程操作统计过程操作(SPCSPC)中的一些问题)中的一些问题学习目标学习目标1认识工序质量的受控状态和失控状态的特点及典 型表现;2理解工序能力的意义,了解工序能力测定的条件 和方法;3掌握工序能力指数的意义和各种情况下的计算方 法,理解工序能力指数和不合格率的关系,了解 利用工序能力指数对工序能力进行判断及处置的 原则;4掌握操作图的概念、原理和分类,熟悉几种常
2、用 操作图的设计方法,了解利用操作图对过程质量 状态进行分析与判断的规定。第一节第一节 工序质量的受控状态工序质量的受控状态一、工序质量的两种状态一、工序质量的两种状态 生产过程中质量波动的综合表达是工序质量特工序质量特 性值性值的波动。在受控状态下,这种波动的统计规律 性可以用正态分布随机变量正态分布随机变量来近似近似描述;正态分布的两个参数则需要通过总体总体的随机样 本来进行估计:用样本统计量(样本平均值)x 去估计,用s(样本标准差)去估计;生产过程中,工序质量有两种状态:受控状态受控状态和 失控状态失控状态。如工序质量特性值为X,分布参数为 和,即XN(,2),则工序质量的两种状态 可
3、以用和的变化来判别。(一)受控状态(一)受控状态(in control)工序质量处于受控状态时,质量特性值的分布特 性不随时间而变化,始终保持稳定且符合质量规格 的要求。见以下图81。图图81 生产过程的受控状态生产过程的受控状态在图81中,0和0 是排除了影响工序质量的系统 性因素后,质量特性值X或其统计量的数学期望数学期望和 标准差标准差,是工序质量操作的目标。图中黑点表示随 着时间的推移,X的观测值x(或X的统计量的观测 值,如样本平均值 、样本中位数 等)的散布 情况。这些黑点依概率散布在中心线(0)两侧,不应有任何系统性规律,且都介于上、下操作限 (UCL和LCL)之间。(二)失控状
4、态(二)失控状态(out of control)(1)0,=0,保持稳定。见图82。(2)=0,0 ,保持稳定。见图83。(3)0,0,和 都保持稳定。(4)和 中至少有一个不稳定,随时间而变化。不管是何种形式的失控状态,都表示存在导致 质量失控的系统性因素。一旦发现工序质量失控,就应立即查明原因,采取措施,使生产过程尽快恢 复受控状态,减少因过程失控所造成的质量损失。二、工序质量状态识别中的问题二、工序质量状态识别中的问题1.“1.“受控受控”和和“失控失控”是和操作目标相关联的两种质量是和操作目标相关联的两种质量状态,在一定条件下,它们可以相互转化。状态,在一定条件下,它们可以相互转化。工
5、序质量工序质量操作操作是一个不断发现问题、分析问题、反响问题和纠正问题的动态监控过程(见图84)。从某种意义上说,工序质量操作的成功取决于能否及时发现生产过程的质量偏差,即质量特性值的异常表现。发现发现分析分析反馈反馈纠正纠正图图84 工序质量操作系统工序质量操作系统2.2.由于生产过程中工序质量特性值表现的随机性,工由于生产过程中工序质量特性值表现的随机性,工 序质量异常波动的发现及原因的分析往往需要借助序质量异常波动的发现及原因的分析往往需要借助 数理统计中的统计推断方法。数理统计中的统计推断方法。统计推断中广泛使用 的样本平均值统计量,不管其来自什么样的总体,只要样本容量n充分大(实践中
6、只需n30),样本 平均值 就必定趋近于正态分布,见P225图85所示。w总体数学期望总体数学期望常用样本样本平均值 来估计。有时也用 样本中位数 来估计。w总体总体标准差 可用样本样本标准差s来估计,也可用样本 极差R或R序列的平均值 来估计。实际应用中,的 估计值 ,其中 是和样本容量n有关的 参数,可查表81。表81 3 3操作限参数表操作限参数表nd2d3A2D3D4M3E21.1284 0.8531.880/3.2671.0002.66031.6926 0.8881.023/2.5751.1601.77242.0588 0.8800.729/2.2821.0921.45752.325
7、9 0.8640.577/2.1151.1981.29062.5344 0.8480.483/2.0041.1351.18472.7044 0.8330.4190.0761.9241.2141.10982.8472 0.820o.3730.1361.8641.1601.05492.9701 0.8080.3370.1841.8161.2241.010103.0775 0.7970.3080.2231.7771.1760.975第二节第二节 工序能力和工序能力指数工序能力和工序能力指数一、工序能力分析一、工序能力分析(一)工序能力的概念(一)工序能力的概念 当影响工序质量的各种系统性因素已经消除
8、,由 5M1E等原因引起的偶然性质量波动已经得到有效的 管理和操作时,工序质量处于受控状态。这时,生 产过程中工序质量特性值的概率分布反映了工序的 实际加工能力。工序能力工序能力是受控状态下工序对加工质量的保证能 力,具有再现性或一致性的固有特性。w工序能力工序能力B可用工序质量特性值分布的分散性特征 来度量。如工序质量特性值 X 的数学期望为,标 准差为,则工序能力工序能力工序能力工序能力 B=6 B=6 其中:w当 X(,2)时,p(3x+3)=99.73%。(3,+3)几乎包括了质量特性值X的实际 分布范围。B越小,工序能力越强。工序能力的大 小应和质量要求相适应。w工序能力指标大致有以
9、下三个方面的用途:(1)选择经济合理的工序方案;(2)协调工序之间的相互关系;(3)验证工序质量保证能力;(二)工序能力的调查(二)工序能力的调查 工序能力调查一般只对已确定设置工序质量操作 点的关键工序关键工序进行。调查工作的流程见图86。(三)工序能力的测定(三)工序能力的测定w为使测定结果真实可靠,被调查的工序必须标准 化,进入管理状态;样本容量要足够大,至 少不得少于50。w工序能力的测定方法,通常有以下几种:1.较正规的测定方法是利用公式:B=6s=6R/d2 2.当需要快速算得结果,而精度要求不高时,可取 一个容量为10的样本,得极差R。此时查表81 d23.078,故得简化公式B
10、 2R 3.SCAT法(Simple Capability Acceptance Test)。这是一种快速简易判断法。使用于不适合大样本测定(如时间紧、破坏性 检验等)的问题。基本方法是把预先规定的工序能力是否合格的 判断值和由样本得到的极差R进行比较,以判定工 序能力是否满足质量要求。二、工序能力指数二、工序能力指数C Cp p 工序能力指数工序能力指数:工序质量标准的范围(公差T)与工序能力的比率。Cp=T/6 (工序能力应当满足质量操作的实际需要)(工序能力应当满足质量操作的实际需要)w 在一定工序条件下,工序能力工序能力B=6基本稳定,它 反映工序的固有能力;w 工序能力指数工序能力指
11、数把工序能力和实际的质量操作要求联 系起来。即使是相同的工序能力,也会因为工序质 量标准的不同,而使工序能力指数大相径庭;w 因此,只有通过工序能力指数,才能考察工序能力只有通过工序能力指数,才能考察工序能力 是否满足质量操作的实际需要。是否满足质量操作的实际需要。(一)工序能力指数的计算(一)工序能力指数的计算 只有在工序处于受控状态的条件下,才能计算 工序能力指数。1.1.工序无偏,双向公差的情形工序无偏,双向公差的情形 设工序公差为T,公差上限和下限分别为Tu 和TL,公差中心为 TM ,则 x=TM。见以下图87。在图 中,Pu 和PL 分别为超上差和超下差的不合格率。此时此时,2.2
12、.工序有偏,双向公差的情形工序有偏,双向公差的情形 因为工序有偏,即 ,见以下图88。偏移量偏移量:,偏移系数偏移系数:工序有偏的工序能力指数工序有偏的工序能力指数:实际上,当工序无偏时,0,故此时 。一般情况下,应有 ,故 ,因此 。3.3.单向公差的情形单向公差的情形 当只要求操作单向公差时,工序质量特性值一般为非正态分布。由于它的真实分布较复杂,所以常用正态分布正态分布来近似。w当只要求操作公差上限时:w当只要求操作公差下限时:(二)工序能力指数和不合格率(二)工序能力指数和不合格率(工序处于受控状态,且质量特性值服从正态分布)1.1.工序无偏时的不合格率工序无偏时的不合格率p p 工序
13、无偏工序无偏时,,见图87。显然 所以 又因为 所以:假设记合格率为q,则 2.2.工序有偏时的不合格率工序有偏时的不合格率p p 工序有偏工序有偏时,如图88所示。显然,w当工序右偏当工序右偏,即 时,所以有不合格率不合格率p:w当工序左偏,当工序左偏,即 时,所以仍有不合格率仍有不合格率p:w综上所述,当工序处于受控状态,质量特性值服从正 态分布时,不合格品率p和合格品率q的计算如下:w当工序无偏工序无偏时:w当工序有偏工序有偏时:w当工序无偏时,k0,上述两个公式是一致的。一般,工序有偏时的不合格率要高于无偏时的不合格率。w利用上述公式已编制了相应的数值表,见表82。三、工序能力的判断及
14、处置三、工序能力的判断及处置w工序能力的判断工序能力的判断是对工序能力满足质量标准的程度做 出判断。目的是对工序进行预防性处置,以确保生产过 程的质量水平。理想的工序能力理想的工序能力既要满足质量保证的要求,又要符 合经济性的要求。w表83列出的工序能力判断标准也适用于Cpk、CpL 和Cpu。当发现工序有偏时,原则上应采取措施调整 分布中心。考虑到调整时的技术难度及本钱,工序 有偏时调整的标准列于下表84。表表83 工序能力指数判断标准工序能力指数判断标准表表84 存在存在 k 时的判断标准时的判断标准例例1 某零件内径尺寸公差为某零件内径尺寸公差为 ,从一足够大的随,从一足够大的随机样本得
15、,机样本得,s0.003。试作工序能力分析。试作工序能力分析。解:公差中心 ,即工序右偏 偏移量 偏移系数 所以,工序能力指数工序能力指数 因为,工序无偏能力指数 ,所以不合格率不合格率:根据Cp1.667和k0.6,对照表84,虽然工序能力很强,但由于偏移系数太大,导致实际工序能力严峻缺乏,所以要注意均值的变化,找出使加工中心发生偏离的系统性原因,减少加工中心 和公差中心TM的偏离程度。第三节第三节 工序质量操作图工序质量操作图一、操作图的概念、原理和分类一、操作图的概念、原理和分类(一)操作图的概念和原理(一)操作图的概念和原理 操作图操作图(control chart)是操作生产过程状态
16、、保证工序质量 的主要工具。应用操作图可以对工序过程状态进行分析、预测、判断、监控和改进,实现预防为主的过 程质量管理。图图89 操作图的基本模式操作图的基本模式w操作界限操作界限一般根据“3”原理来确定。如中心线:CL=,则:UCL=+3;LCL=-3w如工序质量特性值或其统计量服从(或近似服从)正 态分布,且工序处于受控状态,工序能力也充足,则 根据正态分布原理,按时间顺序抽样的观测数据点散 布在操作界限内的概率约为99.73,在操作界限外 的概率约为0.27%。并且,这些观测数据点在操作图 上的散布关于纵轴方向应是独立随机的,其密度应符 合 的统计规律。X(,2)w而如果在生产过程中,一
17、旦发现观测数据点越出控 制界限或在操作界限内的散布相互不随机独立,不 符合 的统计规律,根据统计推断的原理,应当疑心生产过程已受到系统性因素的干扰,可能 已处于失控状态。利用操作图对生产过程质量状态进行统计推断 的基本原理可参见以下图810,按“3”原理,其中:=0.0027,/2=0.00135X(,2)w操作图的第一类错误操作图的第一类错误:当生产过程处于受控状态,工序能力充足,质量特性值或其统计量服从正态 分布时,虽然观测数据点落在操作界限外的概率只 有0.27%,但由于样本的随机性,仍有可能会发生。当0.27%的小概率事件真的发生时,将会导致“生产 过程失控”的错误判断。称这一类因虚发
18、信号而造成 的错误判断为操作图的第一类错误(操作图的第一类错误(表示)表示)。w操作图的第二类错误操作图的第二类错误:与此相反,当系统性质量因素 影响生产过程而使工序质量失控时,由于样本的随 机性,仍会有一定比例的观测数据点落在操作界限 内。当这种情况发生时,将会导致“生产过程正常”的 错误判断。称这一类错误为操作图的第二类错误操作图的第二类错误(以(以 表示)表示)。操作图的第一类错误概率用表示,操作图的第二 类错误概率用表示,见图810。操作图的两类错误都将造成生产过程的混乱和经济 损失。显然,1是过程失控得到正确判别的概率过程失控得到正确判别的概率,一般 称之为检出力检出力。改变操作界限
19、可以改变两类错误的概率,但此消彼 长,无法完全防止,也无法同时减少。图图810 操作图的两类错误操作图的两类错误w工序质量操作图可以直接操作生产过程,起到预防为 主、稳定生产、保证质量的作用。操作图的作用操作图的作用大 致表达在以下几个方面:(1)应用于质量诊断;(2)应用于质量操作;(3)应用于质量改进。(二)操作图的分类(二)操作图的分类 1.常按质量特性值或其统计量的观测数据的性质分 成:计量值操作图计量值操作图和计数值操作图计数值操作图两大类。2.在操作图的实际应用中,常将表现数据集中程度 的操作图和分散程度的操作图联合使用。两图连 用后,检出力得到加强。w 一些常用的操作图见下表85
20、所示。表表8 85 5 操作图种类及适用场合操作图种类及适用场合 类别名称控制图符 号中心线上、下控制限特 点适用场合计计量量值值控控制制图图平 均 值 极差 控制图最常用。效果好,但计算工作量大产品批量较大的工序中 位 数 极差控制图计算简便,但效果较差产品批量较大的工序单 值 移动极差控制图简单,判断及时。不易发现工序分布中心的变化每次只能得到一个数据或希望尽快发现并消除异常因素计计数数值值控控制制图图不 合 格 品数控制图较常用,简单,易于理解样本大小相等不 合 格 品率控制图计算量大,控制线凹凸不平样本大小可以不等缺陷数控制图较常用,简单,易于理解样本大小相等单 位 缺 陷数控制图计算
21、量大,控制线凹凸不平样本大小可以不等二、操作图的设计二、操作图的设计 1.收集数据;2.确定操作界限(UCL、LCL”3”原理);3.绘制操作图;4.操作界限的修正;5.操作图的使用和改进。三、几种常用的操作图三、几种常用的操作图(一)三种常用的(一)三种常用的计量值操作图计量值操作图 【例】某种钻头车外圆工序的质量标准是直径6.46mm 6.50mm。开始加工时,先每隔半小时抽取五个样品,测得直径数据。共采集了20个样本。为了便于计算,作数据变换:w变换后的数据 列于P240表86。1.平均值平均值极差操作图(极差操作图(xR图)图)例例2 利用表86数据设计 xR操作图。解:解:20组数据
22、的总平均值 =78.44,平均极差 。由样本容量n5,查表81知,参数 ,。所以,x R操作图的设计如下(公式见表85):对于 x 图:对于R 图:经数据复原,x 图的中心线为6.478,操作上限为6.487,操作下限为6.470;R图的中心线为0.0145,操作上限为0.0307,操作下限为0。实测数据的 x R操作图见以下图811。图图8 811 11 例例2 2的的 操作图操作图 2.2.中位数中位数极差操作图(极差操作图(-R图)例例3 利用表86数据设计 R操作图。解:解:由表86知,中位数平均值 78.25,平均极差 =14.5。由于样本容量n5,查表81知,参数 ,同例2。所以,
23、R操作图的设计如下(公式见表85):对于 图:R图同例2,从略。和例2比较,图中上、下操作限的间距略大于 图中的上、下限间距。说明 图的检出力比 图的稍逊,但使用方 便是其优点。3 3单值单值-移动极差操作图移动极差操作图(XRs图图)例例4 利用表利用表86数据设计单值数据设计单值移动极差操作图。移动极差操作图。解解:移动极差Rs是按时间顺序相邻两质量特性值观测数据的差异,因此,可看作容量为n=2的样本的极差。从表81查得:E=2.66,D4=3.267,D3=0。根据表86所列100个数据,可求得99个移动极差(从略)。99个极差的平均值:所以,操作图的设计如下(公式见表85):对于x图:
24、对于 Rs 图:数据复原及绘图从略。XRs(二)两种常用的(二)两种常用的计数值操作图计数值操作图w 计数值操作图计数值操作图可以利用常规的质量记录、统计报表 提供的信息,不必在生产现场专门采集即时数据,使用简单方便,能为管理决策提供直接、及时的信 息。w 但是,计数值操作图对生产过程质量波动的敏感性 较差,对质量状态失控的原因也较难直接揭示。w 计数值操作图一般是单图使用。1.1.不合格率(不合格率(p p图)图)和和不合格数操作图(不合格数操作图(npnp图)图)w不合格率操作图不合格率操作图以生产过程不合格率为操作对象,可以用于样本大小不等的场合。w不合格数操作图不合格数操作图以生产过程
25、不合格数为操作对象,常用于样本大小相同的场合。w如产品(或加工对象)的质量合格与否必须由多种 检查工程综合判断,则当操作图告警时,往往难以 判断引起质量问题的原因。在这种情况下,如在控 制图设计时,能突出影响合格性的重要检查工程,放弃一些次要检查工程,也不失为一种明智之举。w如样本容量为n,不合格率为p,则不合格数为np。因此,不合格率操作图和不合格数操作图存在密切 的内在联系。例例5 工序产品检测数据见表工序产品检测数据见表87。试作。试作np及及p操作图。操作图。解解:k25个检验批,每批容量 和不合格数 见表 进一步可算得:对于p操作图:对于np操作图:例5的np操作图见P246图812
26、,p操作图从略。在np图和p图中,如操作下限为负数,则改取零,即不作限制。2.2.缺陷数操作图(缺陷数操作图(c c图)和单位缺陷数操作图(图)和单位缺陷数操作图(u u图)图)w缺陷数操作图缺陷数操作图和单位缺陷数操作图单位缺陷数操作图是计点值类型的 操作图。wC图适用于检测对象大小相同或近似的缺陷数操作 问题,而当检测对象大小差异较大时最好使用u图。例例6 对某产品的同一部位外表进行检验,共检验了对某产品的同一部位外表进行检验,共检验了25个个 产品。产品。25个产品的该部位缺陷数见表个产品的该部位缺陷数见表88。试作。试作c控控 制图和制图和u操作图。操作图。解解:k25,和 均已知。对
27、于对于c操作图操作图:因为缺陷数不能为负数,且必须为整数,故c操作图须作如 下调整(见下页图814):对于对于u操作图操作图:单位缺陷数不能为负值,故u操作图须作如下调整(图略):例例6 6的的c c操作图操作图 四、操作图的分析与判断四、操作图的分析与判断w用操作图监视和识别生产过程的质量状态,就是根据 样本数据形成的样本点的位置及变化趋势对工序质量 进行分析和判断。如发现异常情况,应及时查明原 因,采取相应措施,使工序重新回到受控状态。w操作图是在生产过程中,对工序质量进行预防为主的、面向生产现场的重要监控工具。w生产过程受控状态的典型表现是同时符合以下两方面的要求:(1)样本点全部处在操
28、作界限内;(2)样本点在操作界限内排列无异常。w原则上,如不符合上述任何一方面的要求,就表示生 产过程已处于失控状态。(一)表示受控状态的操作图的特点(一)表示受控状态的操作图的特点 1.所有样本点都在操作界限内;2.位于中心线两侧的样本点数目大致相同;3.越近中心线,样本点越多。在中心线上、下各一个 “”的范围内的样本点约占2/3,靠近操作界限的样 本点极少;4.样本点在操作界限内的散布是独立随机的,无明显 规律或倾向。w对于以下情况仍可认为生产过程处于受控状态(仍应 及时找出界外点的产生原因):连续25个样本点在控 制界限内;连续35个样本点中仅有一个超出操作界限;连续100个样本点中,至
29、多只有两个样本点超出操作 界限。(二)表示失控状态的操作图的特点(二)表示失控状态的操作图的特点 有较多样本点超出操作界限,或样本点在操作界限内 的散布显示非随机独立的迹象。对于前者,可参考 受控状态的要求进行分析与判断;对于后者,则可 细分为下面四种具体情况:1.有多个样本点连续出现在中心线一侧有多个样本点连续出现在中心线一侧w在中心线一侧出现5点链时应注意工序的开展,出现6 点链时应开始作原因调查,出现7点链时就可判断生 产过程已失控(见以下图)。w当出现至少有10个样本点位于中心线同侧的11点链,至少有12个样本点位于中心线同侧的14点链,至少 有14个样本点位于中心线同侧的17点链,以
30、及至少 有16个样本点位于中心线同侧的20点链等情况时,也可判断生产过程失控。2.出现连续上升或下降的出现连续上升或下降的8点链点链 3.有多个样本点接近操作界限有多个样本点接近操作界限 3点链中至少有2点落在警戒区内,7点链中至少 有3点落在警戒区内,10点链中至少有4点落在 警戒区内,则可判断生产过程失控。4.样本点散布出现以下四种趋势或规律样本点散布出现以下四种趋势或规律 (1)周期性变化;(2)分布水平突变;(3)分布水平渐变;(4)离散度变大;第四节第四节 实施实施统计过程操作统计过程操作(SPCSPC)中的一些问题中的一些问题一、关于一、关于SPCSPC的一些认识的一些认识w SP
31、C和ISO9000:2000具有密切的关系;w 企业实施SPC也经常会有一些认识误区,如:(1)缺少适宜的测量工具。(2)生产过程未经验证,直接使用操作图。(3)没有将操作图用于质量改进。(4)使用操作图是质量管理部门或人员的事情。二、关于二、关于SPCSPC的实施现状及开展的实施现状及开展w目前,已有越来越多的企业开始采用SPC来进行质量 管理,并取得了明显成效,同时大型企业也开始要求 供给商采用SPC操作质量,SPC正以其显而易见的 成效得到企业的普遍认可。w其开展呈现如下特点:1.分析功能强大,辅助决策作用明显;2.表达全面质量管理思想;3.与计算机网络技术紧密结合;4.系统自动化程度不断加强;5.系统可扩展性和灵活性要求越来越高。第八章作业第八章作业 P254:1、6、9谢谢观看/欢送下载BY FAITH I MEAN A VISION OF GOOD ONE CHERISHES AND THE ENTHUSIASM THAT PUSHES ONE TO SEEK ITS FULFILLMENT REGARDLESS OF OBSTACLES.BY FAITH I BY FAITH