《安徽省砀山县联考2023年中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《安徽省砀山县联考2023年中考数学模拟精编试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在ABC中,AB=AC=10,CB
2、=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A5048B2548C5024D2如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()ABCD3下面运算结果为的是ABCD4已知x1、x2是关于x的方程x2ax2=0的两根,下列结论一定正确的是()Ax1x2Bx1+x20Cx1x20Dx10,x205下列事件是必然事件的是()A任意作一个平行四边形其对角线互相垂直B任意作一个矩形其对角线相等C任意作一个三角形其内角和为D任意作一个菱形其对角线相等且互相垂直平分6下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四
3、边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个A4B3C2D17如图,ABC中,ABAC,CAD为ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )ADAE=BBEAC=CCAEBCDDAE=EAC8如果y+3,那么yx的算术平方根是( )A2B3C9D39若=1,则符合条件的m有()A1个B2个C3个D4个10如图,两根竹竿AB和AD斜靠在墙CE上,量得ABC=,ADC=,则竹竿AB与AD的长度之比为ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、O
4、C为边作矩形OABC,双曲线(0)交AB于点E,AEEB=13.则矩形OABC的面积是 _.12如图,点C在以AB为直径的半圆上,AB8,CBA30,点D在线段AB上运动,点E与点D关于AC对称,DFDE于点D,并交EC的延长线于点F下列结论:CECF;线段EF的最小值为;当AD2时,EF与半圆相切;若点F恰好落在BC上,则AD;当点D从点A运动到点B时,线段EF扫过的面积是其中正确结论的序号是 13如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足SPAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为_14如图,圆O的直径AB垂直于弦CD,垂足是E,A=2
5、2.5,OC=4,CD的长为_15如图,在ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=_16如图,四边形ABCD内接于O,AB是O的直径,过点C作O的切线交AB的延长线于点P,若P40,则ADC_17某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为_.三、解答题(共7小题,满分69分)18(10分)解不等式组 请结合题意填空,完成本题的解答(I)解不等式(1),得 ;(II)解不等式(2),得 ;(III)把不等式和的解集在数轴上表示出来:(IV)原不等式组的解集为 19(5分)如图,直线与第
6、一象限的一支双曲线交于A、B两点,A在B的左边.(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为;当ACAB时,求证:k为定值.20(8分)某商店经营儿童益智玩具,已知成批购进时的单价是20元调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元求y与x的函数关系式并直接写出自变量x的取值范围每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的
7、售价定为多少元时可使月销售利润最大?最大的月利润是多少?21(10分)如图是某旅游景点的一处台阶,其中台阶坡面AB和BC的长均为6m,AB部分的坡角BAD为45,BC部分的坡角CBE为30,其中BDAD,CEBE,垂足为D,E现在要将此台阶改造为直接从A至C的台阶,如果改造后每层台阶的高为22cm,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm且不足22cm时,按一个台阶计算可能用到的数据:1.414,1.732)22(10分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE求证:AECF23(12分)如图,在平面直角坐标系中,抛物线y=x22ax与x轴相交于O
8、、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是1(1)求k,a,b的值;(2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,当PBCD时,点Q是直线AB上一点,若BPQ+CBO=180,求Q点坐标24(14分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购
9、买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】设以AB、AC为直径作半圆交BC于D点,连AD,如图,ADBC,BD=DC=BC=8,而AB=AC=10,CB=16,AD=6,阴影部分面积=半圆AC的面积+半圆AB的面积ABC的面积,=52166,=251故选B2、D【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率详解:共6个数,大于3的有3个,P(大于3)=.故选D点睛:本题考查概率的求法:如果一个事件有n种可
10、能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=3、B【解析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断【详解】. ,此选项不符合题意;.,此选项符合题意;.,此选项不符合题意;.,此选项不符合题意;故选:【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方4、A【解析】分析:A、根据方程的系数结合根的判别式,可得出0,由此即可得出x1x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1x2=2,
11、结论C错误;D、由x1x2=2,可得出x10,x20,结论D错误综上即可得出结论详解:A=(a)241(2)=a2+80,x1x2,结论A正确;B、x1、x2是关于x的方程x2ax2=0的两根,x1+x2=a,a的值不确定,B结论不一定正确;C、x1、x2是关于x的方程x2ax2=0的两根,x1x2=2,结论C错误;D、x1x2=2,x10,x20,结论D错误故选A点睛:本题考查了根的判别式以及根与系数的关系,牢记“当0时,方程有两个不相等的实数根”是解题的关键5、B【解析】必然事件就是一定发生的事件,根据定义对各个选项进行判断即可【详解】解:A、任意作一个平行四边形其对角线互相垂直不一定发生
12、,是随机事件,故本选项错误;B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;C、三角形的内角和为180,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,故选:B【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件熟练掌握相关图形的性质也是解题的关键6、C【解析】四边相等的四边形一定是菱形,正确;顺次连接矩形各边中
13、点形成的四边形一定是菱形,错误;对角线相等的平行四边形才是矩形,错误;经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,正确;其中正确的有2个,故选C考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定7、D【解析】解:根据图中尺规作图的痕迹,可得DAE=B,故A选项正确,AEBC,故C选项正确,EAC=C,故B选项正确,ABAC,CB,CAEDAE,故D选项错误,故选D【点睛】本题考查作图复杂作图;平行线的判定与性质;三角形的外角性质8、B【解析】解:由题意得:x20,2x0,解得:x=2,y=1,则yx=9,9的算术平方根是1故选B9、C【解
14、析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【详解】=1 m2-9=0或m-2= 1 即m= 3或m=3,m=1 m有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.10、B【解析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在RtABC中,AB=,在RtACD中,AD=,AB:AD=:=,故选B【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题二、填空题(共7小题,每小题3分,满分21分)11、1
15、【解析】根据反比例函数图象上点的坐标特征设E点坐标为(t,),则利用AE:EB=1:3,B点坐标可表示为(4t,),然后根据矩形面积公式计算【详解】设E点坐标为(t,),AE:EB=1:3,B点坐标为(4t,),矩形OABC的面积=4t=1故答案是:1【点睛】考查了反比例函数y=(k0)系数k的几何意义:从反比例函数y=(k0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|12、.【解析】试题分析:连接CD,如图1所示,点E与点D关于AC对称,CE=CD,E=CDE,DFDE,EDF=90,E+F=90,CDE+CDF=90,F=CDF,CD=CF,CE=CD=CF,结
16、论“CE=CF”正确;当CDAB时,如图2所示,AB是半圆的直径,ACB=90,AB=8,CBA=30,CAB=60,AC=4,BC=CDAB,CBA=30,CD=BC=根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为CE=CD=CF,EF=2CD线段EF的最小值为结论“线段EF的最小值为”错误;当AD=2时,连接OC,如图3所示,OA=OC,CAB=60,OAC是等边三角形,CA=CO,ACO=60,AO=4,AD=2,DO=2,AD=DO,ACD=OCD=30,点E与点D关于AC对称,ECA=DCA,ECA=30,ECO=90,OCEF,EF经过半径OC的外端,
17、且OCEF,EF与半圆相切,结论“EF与半圆相切”正确;当点F恰好落在上时,连接FB、AF,如图4所示,点E与点D关于AC对称,EDAC,AGD=90,AGD=ACB,EDBC,FHCFDE,FH:FD=FC:FE,FC=EF,FH=FD,FH=DH,DEBC,FHC=FDE=90,BF=BD,FBH=DBH=30,FBD=60,AB是半圆的直径,AFB=90,FAB=30,FB=AB=4,DB=4,AD=ABDB=4,结论“AD=”错误;点D与点E关于AC对称,点D与点F关于BC对称,当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称,EF扫
18、过的图形就是图5中阴影部分,S阴影=2SABC=2ACBC=ACBC=4=,EF扫过的面积为,结论“EF扫过的面积为”正确故答案为考点:1圆的综合题;2等边三角形的判定与性质;3切线的判定;4相似三角形的判定与性质13、4【解析】分析:首先由SPAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值详解:设ABP中AB边上的高是hSPAB=S矩形ABCD,ABh=ABAD,h=AD=2,动点P在与AB平行且与AB的距离是2的直线l上
19、,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离在RtABE中,AB=4,AE=2+2=4,BE=,即PA+PB的最小值为4故答案为4点睛:本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质得出动点P所在的位置是解题的关键14、【解析】试题分析:因为OC=OA,所以ACO=,所以AOC=45,又直径垂直于弦,所以CE=,所以CD=2CE=考点:1解直角三角形、2垂径定理15、【解析】AB=AC,ADBC,BD=CD=2,BE、AD分别是边AC、BC上的高,ADC=BEC=90,C=C,ACDBCE,CE=,故答案为.16
20、、115【解析】根据过C点的切线与AB的延长线交于P点,P=40,可以求得OCP和OBC的度数,又根据圆内接四边形对角互补,可以求得D的度数,本题得以解决【详解】解:连接OC,如右图所示,由题意可得,OCP=90,P=40,COB=50,OC=OB,OCB=OBC=65,四边形ABCD是圆内接四边形,D+ABC=180,D=115,故答案为:115【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件17、10%【解析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案【详解】解:
21、设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1答:这两年平均每年绿地面积的增长率为10%故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量(1x)1=现在的量,增长用+,减少用-但要注意解的取舍,及每一次增长的基础三、解答题(共7小题,满分69分)18、(1)x;(1)x1;(3)答案见解析;(4)x1【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【详解】解:(I)解不等式(1),得x;(II)解不等式(1),得x1;(III)把不等式和的解集在数
22、轴上表示出来:(IV)原不等式组的解集为:x1故答案为x、x1、x1【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键19、 (1) 1x3或x0;(2)证明见解析.【解析】(1)将B(3,1)代入,将B(3,1)代入,即可求出解析式;再根据图像直接写出不等式的解集;(2)过A作lx轴,过C作CGl于G,过B作BHl于H, AGCBHA, 设B(m, )、C(n, ),根据对应线段成比例即可得出mn=9,联立,得,根据根与系数的关系得,由此得出为定值.【详解】解:(1)将B(3,1)代入,m=
23、3, ,将B(3,1)代入,,不等式的解集为1x3或x0(2)过A作lx轴,过C作CGl于G,过B作BHl于H,则AGCBHA,设B(m, )、C(n, ), , , mn=9,联立, ,为定值.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是根据题意作出辅助线,再根据反比例函数的性质进行求解.20、(1)y10x2+130x+2300,0x10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230
24、-10x),然后根据月销售利润=一件玩具的利润月销售量即可求出函数关系式(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0x10且x为正整数,分别计算出当x=6和x=7时y的值即可【详解】(1)根据题意得:y(30+x20)(23010x)10x2+130x+2300,自变量x的取值范围是:0x10且x为正整数;(2)当y2520时,得10x2+130x+23002520,解得x12,x211(不合题意,舍去) 当x2时,30+x32(元)答:每件玩具的售价定为32元时,月
25、销售利润恰为2520元(3)根据题意得:y10x2+130x+230010(x6.5)2+2722.5,a100,当x6.5时,y有最大值为2722.5,0x10且x为正整数,当x6时,30+x36,y2720(元),当x7时,30+x37,y2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程21、33层【解析】根据含30度的直角三角形三边的关系和等腰直角三角形的性质得到BD和CE的长,二者的和乘以10
26、0后除以20即可确定台阶的数【详解】解:在RtABD中,BD=ABsin45=3m,在RtBEC中,EC=BC=3m,BD+CE=3+3,改造后每层台阶的高为22cm,改造后的台阶有(3+3)1002233(个)答:改造后的台阶有33个【点睛】本题考查了坡度的概念:斜坡的坡度等于斜坡的铅直高度与对应的水平距离的比值,即斜坡的坡度等于斜坡的坡角的正弦也考查了含30度的直角三角形三边的关系和等腰直角三角形的性质22、证明见解析【解析】试题分析:通过全等三角形ADECBF的对应角相等证得AED=CFB,则由平行线的判定证得结论证明:平行四边形ABCD中,AD=BC,ADBC,ADE=CBF在ADE与
27、CBF中,AD=BC,ADE=CBF, DE=BF,ADECBF(SAS)AED=CFBAECF23、(1)k=1、a=2、b=4;(2)s=t2 t6,自变量t的取值范围是4t1;(3)Q(,)【解析】(1)根据题意可得A(-4,0)代入抛物线解析式可得a,求出抛物线解析式,根据B的横坐标可求B点坐标,把A,B坐标代入直线解析式,可求k,b(2)过P点作PNOA于N,交AB于M,过B点作BHPN,设出P点坐标,可求出N点坐标,即可以用t表示S(3)由PBCD,可求P点坐标,连接OP,交AC于点R,过P点作PNOA于M,交AB于N,过D点作DTOA于T,根据P的坐标,可得POA=45,由OA=
28、OC可得CAO=45则POAB,根据抛物线的对称性可知R在对称轴上设Q点坐标,根据BORPQS,可求Q点坐标【详解】(1)OA=4A(4,0)16+8a=0a=2,y=x24x,当x=1时,y=1+4=3,B(1,3),将A(4,0)B(1,3)代入函数解析式,得,解得,直线AB的解析式为y=x+4,k=1、a=2、b=4;(2)过P点作PNOA于N,交AB于M,过B点作BHPN,如图1,由(1)知直线AB是y=x+4,抛物线是y=x24x,当x=t时,yP=t24t,yN=t+4PN=t24t(t+4)=t25t4,BH=1t,AM=t(4)=t+4,SPAB=PN(AM+BH)=(t25t
29、4)(1t+t+4)=(t25t4)3,化简,得s=t2 t6,自变量t的取值范围是4t1;4t1(3)y=x24x,当x=2时,y=4即D(2,4),当x=0时,y=x+4=4,即C(0,4),CDOAB(1,3)当y=3时,x=3,P(3,3),连接OP,交AC于点R,过P点作PNOA于M,交AB于N,过D点作DTOA于T,如图2,可证R在DT上PN=ON=3PON=OPN=45BPR=PON=45,OA=OC,AOC=90PBR=BAO=45,POACBPQ+CBO=180,BPQ=BCO+BOC过点Q作QSPN,垂足是S,SPQ=BORtanSPQ=tanBOR,可求BR=,OR=2,
30、设Q点的横坐标是m,当x=m时y=m+4,SQ=m+3,PS=m1,解得m=当x=时,y=,Q(,)【点睛】本题考查二次函数综合题、一次函数的应用、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造特殊四边形解决问题.24、(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元【解析】(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木(100a)棵,根
31、据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得【详解】解析:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:,解得:,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100a)棵,根据题意,得:100aa,解得:a50,设购买总费用为W,则W=50a+100(100a)=50a+10000,W随a的增大而减小,当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元考点:一元一次不等式的应用;二元一次方程组的应用.