《浙江省湖州德清县联考2023年中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省湖州德清县联考2023年中考数学模拟精编试卷含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )A最低温度是32B众数是35C中位数是34D平均数是332研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是( )A0.1
2、56105B0.156105C1.56106D1.561063随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图依据统计图得出的以下四个结论正确的是()A的收入去年和前年相同B的收入所占比例前年的比去年的大C去年的收入为2.8万D前年年收入不止三种农作物的收入4若,则的值为( )A6 B6 C18 D305如图所示,的顶点是正方形网格的格点,则的值为()ABCD6的绝对值是( )ABCD7已知关于x的一元二次方程有两个相等的实根,则k的值为( )ABC2或3D
3、或8如图,在ABC中,点D是AB边上的一点,若ACD=B,AD=1,AC=2,ADC的面积为1,则BCD的面积为( )A1B2C3D49如图,已知矩形ABCD中,BC2AB,点E在BC边上,连接DE、AE,若EA平分BED,则的值为()ABCD10如图,直线mn,直角三角板ABC的顶点A在直线m上,则的余角等于( )A19B38C42D5211如图,矩形ABCD中,AB=3,AD=4,连接BD,DBC的角平分线BE交DC于点E,现把BCE绕点B逆时针旋转,记旋转后的BCE为BCE当线段BE和线段BC都与线段AD相交时,设交点分别为F,G若BFD为等腰三角形,则线段DG长为()ABCD12一、单
4、选题如图中的小正方形边长都相等,若MNPMEQ,则点Q可能是图中的()A点AB点BC点CD点D二、填空题:(本大题共6个小题,每小题4分,共24分)13写出一个一次函数,使它的图象经过第一、三、四象限:_14如图,AB是O的直径,CD是O的弦,BAD60,则ACD_15不等式组的解集是_16如图,已知RtABC中,B=90,A=60,AC=2+4,点M、N分别在线段AC、AB上,将ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当DCM为直角三角形时,折痕MN的长为_17如图,已知在ABC中,A=40,剪去A后成四边形,1+2=_.18在10个外观相同的产品中,有2个不合格产品,现从
5、中任意抽取1个进行检测,抽到合格产品的概率是 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60,在楼顶B处测得塔顶D处的仰角为45,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高(=1.73,结果保留一位小数)20(6分) (1)解方程组(2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.21(6分)关于的一元二次方程有实数根求的取值范围;如果是符合条件的最大整数,且一元二
6、次方程与方程有一个相同的根,求此时的值22(8分)如图,已知二次函数的图象与x轴交于A,B两点,与y轴交于点C,的半径为,P为上一动点点B,C的坐标分别为_,_;是否存在点P,使得为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;连接PB,若E为PB的中点,连接OE,则OE的最大值_23(8分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)(1)求a、b的值;(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;(3)动点P从点B出发沿x轴以
7、每秒1个单位长的速度向左移动,设移动时间为t秒,当PAC为等腰三角形时,直接写出t的值24(10分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读25(10分)如图,平面直角坐标系中,将含30的三角尺的直角顶点C落在第二象限其斜边两端点A、B分别落在x
8、轴、y轴上且AB12cm(1)若OB6cm求点C的坐标;若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值是多少cm26(12分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项)并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽
9、取2名学生,求恰好抽到2名男生的概率27(12分)如图,在ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31,众数为33,中位数为33,平均数是=33 故选D点睛:本题考查了众数、
10、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据2、C【解析】解:,故选C.3、C【解析】A、前年的收入为60000=19500,去年的收入为80000=26000,此选项错误;B、前年的收入所占比例为100%=30%,去年的收入所占比例为100%=32.5%,此选项错误;C、去年的收入为80000=28000=2.8(万元),此选项正确;D、前年年收入即为三种农作物的收入,此选项错误,故选C【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系
11、4、B【解析】试题分析:,即,原式=12+18=1故选B考点:整式的混合运算化简求值;整体思想;条件求值5、B【解析】连接CD,求出CDAB,根据勾股定理求出AC,在RtADC中,根据锐角三角函数定义求出即可【详解】解:连接CD(如图所示),设小正方形的边长为,BD=CD=,DBC=DCB=45,在中,则故选B【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形6、C【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决【详解】在数轴上,点到原点的距离是,所以,的绝对值是,故选C【点睛】错因分析容易题,失分原因:未掌握绝
12、对值的概念.7、A【解析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论【详解】方程有两个相等的实根,=k2-423=k2-24=0,解得:k=故选A【点睛】本题考查了根的判别式,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键8、C【解析】ACD=B,A=A,ACDABC,SABC=4,SBCD= SABC- SACD=4-1=1故选C考点:相似三角形的判定与性质.9、C【解析】过点A作AFDE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可【详解】解:如图,过点A作AFDE于F,在矩形AB
13、CD中,ABCD,AE平分BED,AFAB,BC2AB,BC2AF,ADF30,在AFD与DCE中C=AFD=90,ADF=DEC,AF=DC,,AFDDCE(AAS),CDE的面积AFD的面积矩形ABCD的面积ABBC2AB2,2ABE的面积矩形ABCD的面积2CDE的面积(2)AB2,ABE的面积,,故选:C【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB10、D【解析】试题分析:过C作CD直线m,mn,CDmn,DCA=FAC=52,=DCB,ACB=90,=9052=38,则a的余
14、角是52故选D考点:平行线的性质;余角和补角11、A【解析】先在RtABD中利用勾股定理求出BD=5,在RtABF中利用勾股定理求出BF=,则AF=4-=再过G作GHBF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GHFB,得出=,即可求解【详解】解:在RtABD中,A=90,AB=3,AD=4,BD=5,在RtABF中,A=90,AB=3,AF=4-DF=4-BF,BF2=32+(4-BF)2,解得BF=,AF=4-=过G作GHBF,交BD于H,FBD=GHD,BGH=FBG,FB=FD,FBD=FDB,FDB=GHD,GH=G
15、D,FBG=EBC=DBC=ADB=FBD,又FBG=BGH,FBG=GBH,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,GHFB, =,即=,解得x=故选A【点睛】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键12、D【解析】根据全等三角形的性质和已知图形得出即可【详解】解:MNPMEQ,点Q应是图中的D点,如图,故选:D【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等二、填空题:(本大题共6个小题,每小题4分,共24分)13
16、、y=x1(答案不唯一)【解析】一次函数图象经过第一、三、四象限,则可知y=kx+b中k0,b0,由此可得如:y=x1(答案不唯一).14、1【解析】连接BD根据圆周角定理可得.【详解】解:如图,连接BDAB是O的直径,ADB90,B90DAB1,ACDB1,故答案为1【点睛】考核知识点:圆周角定理.理解定义是关键.15、x1【解析】分析:分别求出两个不等式的解,从而得出不等式组的解集详解:解不等式可得:x1, 解不等式可得:x3, 不等式组的解为x1点睛:本题主要考查的是不等式组的解集,属于基础题型理解不等式的性质是解决这个问题的关键16、或【解析】分析:依据DCM为直角三角形,需要分两种情
17、况进行讨论:当CDM=90时,CDM是直角三角形;当CMD=90时,CDM是直角三角形,分别依据含30角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长详解:分两种情况:如图,当CDM=90时,CDM是直角三角形,在RtABC中,B=90,A=60,AC=2+4,C=30,AB=AC=+2,由折叠可得,MDN=A=60,BDN=30,BN=DN=AN,BN=AB=,AN=2BN=,DNB=60,ANM=DNM=60,AMN=60,AN=MN=;如图,当CMD=90时,CDM是直角三角形,由题可得,CDM=60,A=MDN=60,BDN=60,BND=30,BD=DN=AN,BN
18、=BD,又AB=+2,AN=2,BN=,过N作NHAM于H,则ANH=30,AH=AN=1,HN=,由折叠可得,AMN=DMN=45,MNH是等腰直角三角形,HM=HN=,MN=,故答案为:或点睛:本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等17、220.【解析】试题分析:ABC中,A40,=;如图,剪去A后成四边形12+=;12220考点:内角和定理点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键18、【解析】试题分析:根据概率的意义,用符合条件
19、的数量除以总数即可,即.考点:概率三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、塔CD的高度为37.9米【解析】试题分析:首先分析图形,根据题意构造直角三角形本题涉及两个直角三角形,即RtBED和RtDAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC试题解析:作BECD于E可得RtBED和矩形ACEB则有CE=AB=16,AC=BE在RtBED中,DBE=45,DE=BE=AC在RtDAC中,DAC=60,DC=ACtan60=AC16+DE=DC,16+AC=AC,解得:AC=8+8=DE所以塔CD的高度为(8+24)米37.9米
20、,答:塔CD的高度为37.9米20、(1);(2)当坐标为时,取得最小值为.【解析】(1)用加减消元法解二元一次方程组;(2)利用(1)确定出B的坐标,进而得到AB取得最小值时A的坐标,以及AB的最小值【详解】解:(1)得:解得:把代入得,则方程组的解为(2 )由题意得:,当坐标为时,取得最小值为.【点睛】此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键21、(1);(2)的值为【解析】(1)利用判别式的意义得到,然后解不等式即可;(2)利用(1)中的结论得到的最大整数为2,解方程解得,把和分别代入一元二次方程求出对应的,同时满足【详解】解:(
21、1)根据题意得,解得;(2)的最大整数为2,方程变形为,解得,一元二次方程与方程有一个相同的根,当时,解得;当时,解得,而,的值为【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根22、(1)B(1,0),C(0,4);(2)点P的坐标为:(1,2)或(,)或(,4)或(,4);(1)【解析】试题分析:(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)当PB与相切时,PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2的值,过P2作P2Ex轴于E,P2Fy轴于F
22、,根据相似三角形的性质得到 =2,设OC=P2E=2x,CP2=OE=x,得到BE=1x,CF=2x4,于是得到FP2,EP2的值,求得P2的坐标,过P1作P1Gx轴于G,P1Hy轴于H,同理求得P1(1,2),当BCPC时,PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(1)如图1中,连接AP,由OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大试题解析:(1)在中,令y=0,则x=1,令x=0,则y=4,B(1,0),C(0,4);故答案为1,0;0,4;(2)存在点P,使得PBC为直角三角形,分两种情况:当PB与相切时,PBC为直角三角形,如图(2)a,
23、连接BC,OB=1OC=4,BC=5,CP2BP2,CP2=,BP2=,过P2作P2Ex轴于E,P2Fy轴于F,则CP2FBP2E,四边形OCP2B是矩形,=2,设OC=P2E=2x,CP2=OE=x,BE=1x,CF=2x4, =2,x=,2x=,FP2=,EP2=,P2(,),过P1作P1Gx轴于G,P1Hy轴于H,同理求得P1(1,2);当BCPC时,PBC为直角三角形,过P4作P4Hy轴于H,则BOCCHP4, =,CH=,P4H=,P4(,4);同理P1(,4);综上所述:点P的坐标为:(1,2)或(,)或(,4)或(,4);(1)如图(1),连接AP,OB=OA,BE=EP,OE=
24、AP,当AP最大时,OE的值最大,当P在AC的延长线上时,AP的值最大,最大值=,OE的最大值为故答案为23、(1)a=;(2)1n2;(3)满足条件的时间t为1s,2s,或(3+)或(3)s【解析】试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值试题解析:(1)、解:点C是直线l1:y=x+1与轴的交点, C(0,1),点C在直线l2上, b=1, 直线l2的解析式为y
25、=ax+1, 点B在直线l2上,2a+1=0, a=;(2)、解:由(1)知,l1的解析式为y=x+1,令y=0, x=1,由图象知,点Q在点A,B之间, 1n2(3)、解:如图,PAC是等腰三角形, 点x轴正半轴上时,当AC=P1C时,COx轴, OP1=OA=1, BP1=OBOP1=21=1, 11=1s,当P2A=P2C时,易知点P2与O重合, BP2=OB=2, 21=2s,点P在x轴负半轴时,AP3=AC, A(1,0),C(0,1), AC=, AP3=,BP3=OB+OA+AP3=3+或BP3=OB+OAAP3=3,(3+)1=(3+)s,或(3)1=(3 )s,即:满足条件的
26、时间t为1s,2s,或(3+)或(3)s点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案24、(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人【解析】(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360乘以“其它”类的人数所占的百分比即可求解;(3)求
27、得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.【详解】(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,总调查人数2020%100人;(2)参加娱乐的人数10040%40人,从条形统计图中得出参加阅读的人数为30人,“其它”类的人数10040302010人,所占比例1010010%,在扇形统计图中“其它”类的圆心角36010%36;(3)如图(4)估计一下全校课余爱好是阅读的学生约为3200960(人)【点睛】本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键
28、25、(1)点C的坐标为(3,9);滑动的距离为6(1)cm;(2)OC最大值1cm.【解析】试题分析:(1)过点C作y轴的垂线,垂足为D,根据30的直角三角形的性质解答即可;设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CEx轴,CDy轴,垂足分别为E,D,证得ACEBCD,利用相似三角形的性质解答即可试题解析:解:(1)过点C作y轴的垂线,垂足为D,如图1:在RtAOB中,AB=1,OB=6,则BC=6,BAO=30,ABO=60,又CBA=60,CBD=60,BCD=30,BD=3,CD=3,所以点
29、C的坐标为(3,9);设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=1cosBAO=1cos30=6AO=6x,BO=6+x,AB=AB=1在AO B中,由勾股定理得,(6x)2+(6+x)2=12,解得:x=6(1),滑动的距离为6(1);(2)设点C的坐标为(x,y),过C作CEx轴,CDy轴,垂足分别为E,D,如图3:则OE=x,OD=y,ACE+BCE=90,DCB+BCE=90,ACE=DCB,又AEC=BDC=90,ACEBCD,即,y=x,OC2=x2+y2=x2+(x)2=4x2,当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最
30、大值,如图,即当CB旋转到与y轴垂直时此时OC=1,故答案为1考点:相似三角形综合题26、(1)50;(2)240;(3).【解析】用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【详解】解:(1);(2)样本中喜爱看电视的人数为(人,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率【点睛】
31、本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.27、 (1)见解析;(1)1【解析】(1)根据角平分线的作图可得;(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为ABD的中位线可得【详解】(1)如图,射线CF即为所求;(1)CAD=CDA,AC=DC,即CAD为等腰三角形;又CF是顶角ACD的平分线,CF是底边AD的中线,即F为AD的中点,E是AB的中点,EF为ABD的中位线,EF=BD=1【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键