《安徽省庐江县联考2022-2023学年中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《安徽省庐江县联考2022-2023学年中考数学模拟精编试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图是某几何体的三视图及相关数据,则该几何体的全面积是()A15B24C20D102如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是A点A和点CB点B和点DC点A和点DD点B和点C3下列各式计算正确的是( )Aa22a33
2、a5Baa2a3Ca6a2a3D(a2)3a54将20011999变形正确的是()A200021B20002+1C20002+22000+1D2000222000+15下列各式计算正确的是( )ABCD6如图,ABC中,ABAC,CAD为ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )ADAE=BBEAC=CCAEBCDDAE=EAC7已知矩形ABCD中,AB3,BC4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2()A6BC12D128下列命题是真命题的是( )A过一点有且只有一条直线与已知直线平
3、行B对角线相等且互相垂直的四边形是正方形C平分弦的直径垂直于弦,并且平分弦所对的弧D若三角形的三边a,b,c满足a2b2c2acbcab,则该三角形是正三角形9对于代数式ax2+bx+c(a0),下列说法正确的是( ) 如果存在两个实数pq,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)存在三个实数mns,使得am2+bm+c=an2+bn+c=as2+bs+c如果ac0,则一定存在两个实数mn,使am2+bm+c0an2+bn+c如果ac0,则一定存在两个实数mn,使am2+bm+c0an2+bn+cABCD10下面调查方式中,合适的是()A调查你所在班级同学
4、的体重,采用抽样调查方式B调查乌金塘水库的水质情况,采用抽样调査的方式C调查CBA联赛栏目在我市的收视率,采用普查的方式D要了解全市初中学生的业余爱好,采用普查的方式二、填空题(共7小题,每小题3分,满分21分)11分解因式:=_12如果分式的值是0,那么x的值是_.13在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则1=_14如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B,D在AC的两侧,连接BD,交AC于点O,取AC,BD的中点E,F,连接EF若AB12,BC5,且ADCD,则EF的长为_15已知 ,是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不
5、相等的实数根,且满足=1,则m的值是_16如图,矩形OABC的边OA,OC分别在轴、轴上,点B在第一象限,点D在边BC上,且AOD=30,四边形OABD与四边形OABD关于直线OD对称(点A和A,B和B分别对应),若AB=1,反比例函数的图象恰好经过点A,B,则的值为_17如图,直线ab,正方形ABCD的顶点A、B分别在直线a、b上若273,则1 三、解答题(共7小题,满分69分)18(10分)如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.若点坐标为,求的值及图象经过、两点的一次函数的表达式;若,求反比例函数的表达式.19(5分)一只不透明的袋子中装有2个白球
6、和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球用树状图或列表等方法列出所有可能出现的结果;求两次摸到的球的颜色不同的概率20(8分)已知抛物线y=ax2+bx+c()若抛物线的顶点为A(2,4),抛物线经过点B(4,0)求该抛物线的解析式;连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6S6+8时,求x的取值范围;()若a0,c1,当x=c时,y=0,当0xc时,y0,试比较ac与l的大小,并说明理由21(10分)计算:|2|+
7、()12cos4522(10分)如图,在平面直角坐标系中,已知ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,4)请在图中,画出ABC向左平移6个单位长度后得到的A1B1C1; 以点O为位似中心,将ABC缩小为原来的,得到A2B2C2,请在图中y轴右侧,画出A2B2C2,并求出A2C2B2的正弦值23(12分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整)下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85708085张华90757580结合以上信息,回答下列问
8、题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由24(14分)(1)如图1,在矩形ABCD中,点O在边AB上,AOC=BOD,求证:AO=OB;(2)如图2,AB是O的直径,PA与O相切于点A,OP与O相交于点C,连接CB,OPA=40,求ABC的度数参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的
9、面积=()2=9,圆锥的侧面积=56=15,所以圆锥的全面积=9+15=24故选B点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长也考查了三视图2、C【解析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.3、B【解析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解【详解
10、】A.a2与2a3不是同类项,故A不正确;B.aa2a3,正确;C原式a4,故C不正确;D原式a6,故D不正确;故选:B【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.4、A【解析】原式变形后,利用平方差公式计算即可得出答案【详解】解:原式=(2000+1)(2000-1)=20002-1,故选A【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键5、C【解析】解:A2a与2不是同类项,不能合并,故本选项错误;B应为,故本选项错误;C,正确;D应为,故本选项错误故选C【点睛】本题考查幂的乘方与积的乘方;同底数幂的乘法6、D【解析】解:根据图中尺规作图的
11、痕迹,可得DAE=B,故A选项正确,AEBC,故C选项正确,EAC=C,故B选项正确,ABAC,CB,CAEDAE,故D选项错误,故选D【点睛】本题考查作图复杂作图;平行线的判定与性质;三角形的外角性质7、D【解析】根据题意可得到CE=2,然后根据S1S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【详解】解:BC4,E为BC的中点,CE2,S1S234 ,故选D【点睛】此题考查扇形面积的计算,矩形的性质及面积的计算.8、D【解析】根据真假命题的定义及有关性质逐项判断即可.【详解】A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且
12、互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、a2b2c2acbcab,2a22b22c2-2ac-2bc-2ab=0,(a-b)2+(a-c)2+(b-c)2=0,a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.9、A【解析】设 (1)如果存在两个实数pq,使得ap2+bp+c=aq2+
13、bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故中结论不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故错误;(3)如果ac0,则b2-4ac0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数mn,使am2+bm+c0an2+bn+c,故在结论正确;(4)如果ac0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以中结论不一定成立.综上所述,四种说法中正确的是.故选A.10、B【解析】由普查得到的调
14、查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似【详解】A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查CBA联赛栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选B【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选
15、用普查二、填空题(共7小题,每小题3分,满分21分)11、【解析】原式提取2,再利用完全平方公式分解即可【详解】原式【点睛】先考虑提公因式法,再用公式法进行分解,最后考虑十字相乘,差项补项等方法12、1【解析】根据分式为1的条件得到方程,解方程得到答案【详解】由题意得,x1,故答案是:1【点睛】本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1这两个条件缺一不可13、1【解析】试题分析:由三角形的外角的性质可知,1=90+30=1,故答案为1考点:三角形的外角性质;三角形内角和定理14、【解析】先求出BE的值,作DMAB,DNBC延长线,先证明ADMCDN
16、(AAS),得出AM=CN,DM=DN,再根据正方形的性质得BM=BN,设AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根据BD为正方形的对角线可得出BD=, BF=BD=, EF=.【详解】ABC=ADC,A,B,C,D四点共圆,AC为直径,E为AC的中点,E为此圆圆心,F为弦BD中点,EFBD,连接BE,BE=AC=;作DMAB,DNBC延长线,BAD=BCN,在ADM和CDN中,ADMCDN(AAS),AM=CN,DM=DN,DMB=DNC=ABC=90,四边形BNDM为矩形,又DM=DN,矩形BNDM为正方形,BM=BN,设AM=CN=x,BM=AB-AM
17、=12-x=BN=5+x,12-x=5+x,x=,BN=,BD为正方形BNDM的对角线,BD=BN=,BF=BD=,EF=.故答案为.【点睛】本题考查了正方形的性质与全等三角形的性质,解题的关键是熟练的掌握正方形与全等三角形的性质与应用.15、3.【解析】可以先由韦达定理得出两个关于、的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解.【详解】得+=-2m-3,=m2,又因为,所以m2-2m-3=0,得m=3或m=-1,因为一元二次方程的两个不相等的实数根,所以0,得(2m+3)2-4m2=12m+90,所以m,所以m=-1舍去,综上m=3.【点睛】本题考查了根与系数的关系,
18、将根与系数的关系与代数式相结合解题是解决本题的关键.16、【解析】解:四边形ABCO是矩形,AB=1,设B(m,1),OA=BC=m,四边形OABD与四边形OABD关于直线OD对称,OA=OA=m,AOD=AOD=30,AOA=60,过A作AEOA于E,OE=m,AE=m,A(m,m),反比例函数y=(k0)的图象恰好经过点A,B,mm=m,m=,k=【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键17、107【解析】过C作da, 得到abd,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到1的度数【详解】过C作da, ab, abd,四边形A
19、BCD是正方形,DCB=90, 2=73,6=90-2=17,bd, 3=6=17, 4=90-3=73, 5=180-4=107,ad, 1=5=107,故答案为107.【点睛】本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等解决问题的关键是作辅助线构造内错角三、解答题(共7小题,满分69分)18、(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论详解:(1)为的中点, 反比例函数图象过点,设图象经过、两点的一次函数表达式为:,解得,
20、(2), ,设点坐标为,则点坐标为 两点在图象上,解得:,点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式解题的关键是求出点A、E、F的坐标19、(1)详见解析;(2)【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案试题解析:(1)如图: ,所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2);(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为20、()y=x2+3x当3+6S6+2时,x的取值范围
21、为是x或x()ac1【解析】(I)由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x0,通过分割图形求面积法结合3+6S6+2,即可求出x的取值范围,当点P在第四象限时,x0,通过分割图形求面积法结合3+6S6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0xc时y0,可得出抛物线的对称轴x=c,进而可得出b-2ac,结合b=-a
22、c-1即可得出ac1【详解】(I)设抛物线的解析式为y=a(x+2)23,抛物线经过点B(3,0),0=a(3+2)23,解得:a=1,该抛物线的解析式为y=(x+2)23=x2+3x设直线AB的解析式为y=kx+m(k0),将A(2,3)、B(3,0)代入y=kx+m,得:,解得:,直线AB的解析式为y=2x2直线l与AB平行,且过原点,直线l的解析式为y=2x当点P在第二象限时,x0,如图所示SPOB=3(2x)=3x,SAOB=33=2,S=SPOB+SAOB=3x+2(x0)3+6S6+2,即,解得:x,x的取值范围是x当点P在第四象限时,x0,过点A作AEx轴,垂足为点E,过点P作P
23、Fx轴,垂足为点F,则S四边形AEOP=S梯形AEFPSOFP=(x+2)x(2x)=3x+3SABE=23=3,S=S四边形AEOP+SABE=3x+2(x0)3+6S6+2,即,解得:x,x的取值范围为x综上所述:当3+6S6+2时,x的取值范围为是x或x(II)ac1,理由如下:当x=c时,y=0,ac2+bc+c=0,c1,ac+b+1=0,b=ac1由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0)把x=0代入y=ax2+bx+c,得y=c,抛物线与y轴的交点为(0,c)a0,抛物线开口向上当0xc时,y0,抛物线的对称轴x=c,b2acb=ac1,ac12ac,ac1【点睛
24、】本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)巧设顶点式,代入点B的坐标求出a值,分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b-2ac21、+1【解析】分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案详解:原式=22+32 =2+1 =+1点睛:本题主要考查了实数运算,正确化简各数是解题的关键22、(1)见解析(2)【解析】试题分析:(1)直接利用平移的性
25、质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案试题解析:(1)如图所示:A1B1C1,即为所求;(2)如图所示:A2B2C2,即为所求,由图形可知,A2C2B2=ACB,过点A作ADBC交BC的延长线于点D,由A(2,2),C(4,4),B(4,0),易得D(4,2),故AD=2,CD=6,AC=,sinACB=,即sinA2C2B2=考点:作图位似变换;作图平移变换;解直角三角形23、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演
26、讲比赛,理由见解析.【解析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题【详解】(1)服装项目的权数是:120%30%40%=10%,普通话项目对应扇形的圆心角是:36020%=72;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)2=82.5;(3)李明得分为:8510%+7020%+8030%+8540%=80.5,
27、张华得分为:9010%+7520%+7530%+8040%=78.5,80.578.5,李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛【点睛】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键24、(1)证明见解析;(2)25.【解析】试题分析: (1)根据等量代换可求得AOD=BOC,根据矩形的对边相等,每个角都是直角,可知A=B=90,AD=BC,根据三角形全等的判定AAS证得AODBOC,从而得证结论(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角POA的度数,然后利用圆周角定理来求ABC的度数试题解析:(1)AOC=BOD AOC -COD=BOD-COD即AOD=BOC 四边形ABCD是矩形A=B=90,AD=BC AO=OB (2)解:AB是的直径,PA与相切于点A,PAAB,A=90. 又OPA=40,AOP=50,OB=OC,B=OCB. 又AOP=B+OCB,.