山东省德州市禹城市2023届中考适应性考试数学试题含解析.doc

上传人:lil****205 文档编号:88000374 上传时间:2023-04-19 格式:DOC 页数:21 大小:1,006.50KB
返回 下载 相关 举报
山东省德州市禹城市2023届中考适应性考试数学试题含解析.doc_第1页
第1页 / 共21页
山东省德州市禹城市2023届中考适应性考试数学试题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《山东省德州市禹城市2023届中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省德州市禹城市2023届中考适应性考试数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1的值是()A1B1C3D32已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )ABCD3下列说法不正确的是( )A某种彩票中奖的概率是,买1000张该种彩票一定会中奖B了解一批电视机的使用寿命适合用抽样调查C若甲组数据的标准差S甲=0.31,乙组数

2、据的标准差S乙=0.25,则乙组数据比甲组数据稳定D在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件4如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC若AB=8,CD=2,则EC的长为()AB8CD52018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A18108 B1.8108 C1.8109 D0.1810106剪纸是我国传统的民间艺术下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )ABCD7如图,二次函数y=ax2+bx+c(a0)的图象的顶点在第一象限,且过点(0,1)和

3、(1,0)下列结论:ab0,b24a,0a+b+c2,0b1,当x1时,y0,其中正确结论的个数是A5个B4个C3个D2个8如图,O是ABC的外接圆,AD是O的直径,连接CD,若O的半径r=5,AC=5 ,则B的度数是( )A30 B45 C50 D609如图,O的半径OD弦AB于点C,连接AO并延长交O于点E,连接EC,若AB=8,CD=2,则cosECB为()ABCD10计算的结果是()ABCD1二、填空题(本大题共6个小题,每小题3分,共18分)11计算:sin30(3)0=_12在ABCD中,按以下步骤作图:以点B为圆心,以BA长为半径作弧,交BC于点E;分别以A,E为圆心,大于AE的

4、长为半径作弧,两弧交于点F;连接BF,延长线交AD于点G. 若AGB=30,则C=_.13在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90的对应点的坐标为_14有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是_15如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_cm16如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,An,分别过这些点做x轴的垂线与反比例函数y的图象相交于点P1,P2,P3,P4,Pn,再分别过P2,

5、P3,P4,Pn作P2B1A1P1,P3B2A2P2,P4B3A3P3,PnBn1An1Pn1,垂足分别为B1,B2,B3,B4,Bn1,连接P1P2,P2P3,P3P4,Pn1Pn,得到一组RtP1B1P2,RtP2B2P3,RtP3B3P4,RtPn1Bn1Pn,则RtPn1Bn1Pn的面积为_三、解答题(共8题,共72分)17(8分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转如果这三种可能性大小相同,现有两辆汽车经过这个十字路口(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率(2)求至少有一辆汽车向左转的概率18(8分)

6、如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合)设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形19(8分)如图,已知ABC中,AB=AC=5,cosA=求底边BC的长20(8分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出A2

7、B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 21(8分)如图,在平面直角坐标系中,OAOB,ABx轴于点C,点A(,1)在反比例函数的图象上求反比例函数的表达式;在x轴的负半轴上存在一点P,使得SAOP=SAOB,求点P的坐标;若将BOA绕点B按逆时针方向旋转60得到BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由22(10分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点动点C、D分别在直线AB、OB上,将BCD沿着CD折叠,得BCD()如图1,若CDAB,点B恰好落在点A处,求此时点D的坐标;()如图2,

8、若BD=AC,点B恰好落在y轴上,求此时点C的坐标;()若点C的横坐标为2,点B落在x轴上,求点B的坐标(直接写出结果即可)23(12分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D四个等级,并把测试成绩绘成如图所示的两个统计图表七年级英语口语测试成绩统计表成绩分等级人数A12BmCnD9请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中C级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到B级以上包括B级的学生人数24如图,AB是O的直径,弧CDAB,垂足为H,

9、P为弧AD上一点,连接PA、PB,PB交CD于E(1)如图(1)连接PC、CB,求证:BCP=PED;(2)如图(2)过点P作O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:APG=F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求O的直径AB参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】直接利用立方根的定义化简得出答案【详解】因为(-1)3=-1,=1故选:B【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键,2、D【解析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三

10、角形的任意两边之差小于第三边求出x的取值范围,然后选择即可【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,解不等式得,x2.5,解不等式的,x5,所以,不等式组的解集是2.5x5,正确反映y与x之间函数关系的图象是D选项图象故选:D3、A【解析】试题分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可试题解析:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中

11、没有黑球,摸出黑球是不可能事件,故正确故选A考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件4、D【解析】O的半径OD弦AB于点C,AB=8,AC=AB=1设O的半径为r,则OC=r2,在RtAOC中,AC=1,OC=r2,OA2=AC2+OC2,即r2=12+(r2)2,解得r=2AE=2r=3连接BE,AE是O的直径,ABE=90在RtABE中,AE=3,AB=8,在RtBCE中,BE=6,BC=1,故选D5、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当

12、原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:1800000000=1.8109,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值6、A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误故选A考点:中心对称图形;轴对称图形7、B【解析】解:二次函数y=ax3

13、+bx+c(a3)过点(3,3)和(3,3),c=3,ab+c=3抛物线的对称轴在y轴右侧,,x3a与b异号ab3,正确抛物线与x轴有两个不同的交点,b34ac3c=3,b34a3,即b34a正确抛物线开口向下,a3ab3,b3ab+c=3,c=3,a=b3b33,即b33b3,正确ab+c=3,a+c=ba+b+c=3b3b3,c=3,a3,a+b+c=a+b+3a+3+3=a+33+3=33a+b+c3,正确抛物线y=ax3+bx+c与x轴的一个交点为(3,3),设另一个交点为(x3,3),则x33,由图可知,当3xx3时,y3;当xx3时,y3当x3时,y3的结论错误综上所述,正确的结论

14、有故选B8、D【解析】根据圆周角定理的推论,得B=D根据直径所对的圆周角是直角,得ACD=90在直角三角形ACD中求出D 则sinD=D=60B=D=60故选D“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边9、D【解析】连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度利用锐角三角函数的定义即可求出答案【详解】解:连接EB,由圆周角定理可知:B=90,设O的半径为r,由垂径定理可知:AC=BC=4,CD=2,OC=r-2,由勾股定理可知:r2=(r-2)2+42,r=5,BCE中,由勾股定理

15、可知:CE=2,cosECB=,故选D【点睛】本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型10、D【解析】根据同分母分式的加法法则计算可得结论【详解】=1故选D【点睛】本题考查了分式的加减法,解题的关键是掌握同分母分式的加减运算法则二、填空题(本大题共6个小题,每小题3分,共18分)11、- 【解析】sin30=,a0=1(a0)【详解】解:原式=-1=-故答案为:-.【点睛】本题考查了30的角的正弦值和非零数的零次幂.熟记是关键.12、120【解析】首先证明ABG=GBE=AGB=30,可得ABC=60,再利用平行四边形的邻角互补即可解决问题.【详解】由

16、题意得:GBA=GBE,ADBC,AGB=GBE=30,ABC=60,ABCD,C=180-ABC=120,故答案为:120.【点睛】本题考查基本作图、平行四边形的性质等知识,解题的关键是熟练掌握基本知识13、(3,2)【解析】作出图形,然后写出点A的坐标即可【详解】解答:如图,点A的坐标为(-3,2)故答案为(-3,2)【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解14、【解析】列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即可【详解】解:列表得:两个骰子向上的一面的点数和小于6的有10种,则其和小于6的概率是,故答案为:【点睛】

17、本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比15、【解析】设圆锥的底面圆的半径为r,由于AOB90得到AB为圆形纸片的直径,则OBcm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算【详解】解:设圆锥的底面圆的半径为r,连结AB,如图,扇形OAB的圆心角为90,AOB90,AB为圆形纸片的直径,AB4cm,OBcm,扇形OAB的弧AB的长,2r,r(cm)故答案为

18、【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长也考查了圆周角定理和弧长公式16、【解析】解:设OA1A1A2A2A3An2An1An1Ana,当xa时,P1的坐标为(a,),当x2a时,P2的坐标为(2a,),RtP1B1P2的面积为,RtP2B2P3的面积为,RtP3B3P4的面积为,RtPn1Bn1Pn的面积为故答案为:三、解答题(共8题,共72分)17、 (1);(2)【解析】(1)可以采用列表法或树状图求解可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;(2)根据树状图得出至少有一辆汽车向

19、左转的结果数,根据概率公式可得答案【详解】(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,所以两辆汽车都不直行的概率为;(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等P(至少有一辆汽车向左转)=【点睛】此题考查了树状图法求概率解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解18、(1)证明见解析(2) 【解析】试题分析:(1)先根据四边形ABCD是矩形,得出ADBC,PDO=QBO,再根据O为BD的中点得出PODQOB,即可证得OP=OQ;(2)

20、根据已知条件得出A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形试题解析:(1)证明:因为四边形ABCD是矩形,所以ADBC,所以PDO=QBO,又因为O为BD的中点,所以OB=OD,在POD与QOB中,PDO=QBO,OB=OD,POD=QOB,所以PODQOB,所以OP=OQ(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以A=90,在RtABP中,由勾股定理得:,即,解得:t=,即运动时间为秒时,四边形PBQD是菱形考点:矩形的性质;菱

21、形的性质;全等三角形的判断和性质勾股定理19、【解析】过点B作BDAC,在ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.【详解】解:过点B作BDAC,垂足为点D,在RtABD中,,,AB=5,AD=ABcosA=5=3,BD=4,AC=5,DC=2,BC=.【点睛】本题考查了锐角的三角函数和勾股定理的运用.20、(1)画图见解析,(2,-2);(2)画图见解析,(1,0); 【解析】(1)将ABC向下平移4个单位长度得到的A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1

22、,如图所示,找出所求点坐标即可【详解】(1)如图所示,画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键21、(1);(2)P(,0);(3)E(,1),在【解析】(1)将点A(,1)代入,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(,3),计算求出SAOB=4=则SAOP=S

23、AOB=设点P的坐标为(m,0),列出方程求解即可;(3)先解OAB,得出ABO=30,再根据旋转的性质求出E点坐标为(,1),即可求解【详解】(1)点A(,1)在反比例函数的图象上,k=1=,反比例函数的表达式为;(2)A(,1),ABx轴于点C,OC=,AC=1,由射影定理得=ACBC,可得BC=3,B(,3),SAOB=4=,SAOP=SAOB=设点P的坐标为(m,0),|m|1=,|m|=,P是x轴的负半轴上的点,m=,点P的坐标为(,0);(3)点E在该反比例函数的图象上,理由如下:OAOB,OA=2,OB=,AB=4,sinABO=,ABO=30,将BOA绕点B按逆时针方向旋转60

24、得到BDE,BOABDE,OBD=60,BO=BD=,OA=DE=2,BOA=BDE=90,ABD=30+60=90,而BDOC=,BCDE=1,E(,1),(1)=,点E在该反比例函数的图象上考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转22、(1)D(0,);(1)C(116,1118);(3)B(1+,0),(1,0).【解析】(1)设OD为x,则BD=AD=3,在RTODA中应用勾股定理即可求解;(1)由题意易证BDCBOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CEAO于E,由A、B坐标及C的横

25、坐标为1,利用相似可求解出BC、CE、OC等长度;分点B在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=BC,再利用特殊角的三角函数可逐一求解.【详解】()设OD为x,点A(3,0),点B(0,),AO=3,BO=AB=6折叠BD=DA在RtADO中,OA1+OD1=DA19+OD1=(OD)1OD=D(0,)()折叠BDC=CDO=90CDOA且BD=AC,BD=18OD=(18)=18tanABO=,ABC=30,即BAO=60tanABO=,CD=116D(116,1118)()如图:过点C作CEAO于ECEAOOE=1,且AO=3AE=1,CEAO,CAE=60ACE=30且

26、CEAOAC=1,CE=BC=ABACBC=61=4若点B落在A点右边,折叠BC=BC=4,CE=,CEOABE=OB=1+B(1+,0)若点B落在A点左边,折叠BC=BC=4,CE=,CEOABE=OB=1B(1,0)综上所述:B(1+,0),(1,0)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B点的两种情况是解题关键.23、 (1)60人;(2)144;(3)288人.【解析】等级人数除以其所占百分比即可得;先求出A等级对应的百分比,再由百分比之和为1得出C等级的百分比,继而乘以即可得;总人数乘以A、B等级百分比之和即可得【详解】解:本次被抽取参加英语口语测试

27、的学生共有人;级所占百分比为,级对应的百分比为,则扇形统计图中C级的圆心角度数为;人,答:估计英语口语达到B级以上包括B级的学生人数为288人【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了样本估计总体24、(1)见解析;(2)见解析;(3)AB=1【解析】(1)由垂径定理得出CPB=BCD,根据BCP=BCD+PCD=CPB+PCD=PED即可得证;(2)连接OP,知OP=OB,先证FPE=FEP得F+2FPE=180,再由APG+FPE=90得2APG+2FPE=180,据此可得2AP

28、G=F,据此即可得证;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF,先证PAE=F,由tanPAE=tanF得,再证GAP=MPE,由sinGAP=sinMPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由FPE=PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证PEM=ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案【详解】证明:(1)AB是O的直径且ABCD,CPB=BCD,BCP=BCD+PCD=CPB+PCD=PED,BCP=PED;(2)

29、连接OP,则OP=OB,OPB=OBP,PF是O的切线,OPPF,则OPF=90,FPE=90OPE,PEF=HEB=90OBP,FPE=FEP,AB是O的直径,APB=90,APG+FPE=90,2APG+2FPE=180,F+FPE+PEF=180,F+2FPE=1802APG=F,APG= F;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF于M,由(2)知APB=AHE=90,AN=EN,A、H、E、P四点共圆,PAE=PHF,PH=PF,PHF=F,PAE=F,tanPAE=tanF,由(2)知APB=G=PME=90,GAP=MPE,sinGAP=sinMPE,则,MF=GP,3PF=5PG,设PG=3k,则PF=5k,MF=PG=3k,PM=2k由(2)知FPE=PEF,PF=EF=5k,则EM=4k,tanPEM=,tanF=,tanPAE=,PE=,AP=k,APG+EPM=EPM+PEM=90,APG=PEM,APG+OPA=ABP+BAP=90,且OAP=OPA,APG=ABP,PEM=ABP,则tanABP=tanPEM,即,则BP=3k,BE=k=2,则k=2,AP=3、BP=6,根据勾股定理得,AB=1【点睛】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁