《山东省莱芜市莱城区腰关中学2023届中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省莱芜市莱城区腰关中学2023届中考适应性考试数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1用加减法解方程组时,如果消去y,最简捷的方法是()A4
2、3B4+3C2D2+2一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是A平均数B中位数C众数D方差3如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A4B3C2D14如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,GEF=90,则GF的长为( )A2B3C4D55如图是由4个相同的正方体搭成的几何体,则其俯视图是( )ABCD6如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,ABC=90,CAx轴,点C在函数y=(x0)的图象上,若AB=2,则k的值为()A4B2C2D7
3、魏晋时期的数学家刘徽首创割圆术为计算圆周率建立了严密的理论和完善的算法作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A0.5B1C3D8某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()A0.286105 B2.86105 C28.6103 D2.861049下列各式:a0=1 a2a3=a5 22= (35)(2)
4、48(1)=0x2+x2=2x2,其中正确的是 ( )ABCD10如图,矩形是由三个全等矩形拼成的,与,分别交于点,设,的面积依次为,若,则的值为( )A6B8C10D12二、填空题(本大题共6个小题,每小题3分,共18分)11关于x的一元二次方程x2+4xk=0有实数根,则k的取值范围是_12已知二次函数y=x2,当x0时,y随x的增大而_(填“增大”或“减小”)13如图,矩形ABCD中,AD=5,CAB=30,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是_14空气质量指数,简称AQI,如果AQI在050空气质量类别为优,在51100空气质量类别为良,在101150
5、空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示已知每天的AQI都是整数,那么空气质量类别为优和良的天数共占总天数的百分比为_%15如图,若1+2=180,3=110,则4= 16若x,y为实数,y,则4y3x的平方根是_三、解答题(共8题,共72分)17(8分) (yz)1+(xy)1+(zx)1(y+z1x)1+(z+x1y)1+(x+y1z)1求的值18(8分) (1)计算:(ab)2a(a2b); (2)解方程:19(8分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完由于该书畅销,第二次购书时,每本书
6、的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?20(8分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人
7、,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?21(8分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整)类别分数段A50.560.5B60.570.5C70.580.5D80.590.5E90.5100.5请你根据上面的信息,解答下列问题(1)若A组的频数比B组小24,求频数直方图中的a,b的值;(2)在扇形统计图中,D部分所对的圆心角为n,求n的值并补全频数直方图;(3)若成绩在80
8、分以上为优秀,全校共有2 000名学生,估计成绩优秀的学生有多少名?22(10分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,AOB=66,求细线OB的长度(参考数据:sin660.91,cos660.40,tan662.25)23(12分)如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究下面是小东的探究过程,请补充完整:通过取点、画图、测量,得到了x
9、与y的几组值,如下表:012336说明:补全表格时相关数据保留一位小数建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;结合画出的函数图象,解决问题:直接写出周长C的取值范围是_24我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_人,扇形统计图中“了解”部分所对应扇形的圆心角为_.(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_人.(3)若从对校
10、园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题解析:用加减法解方程组 时,如果消去y,最简捷的方法是2+,故选D.2、D【解析】解:A原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D原来数据的方差=,添加数字2后的方差=,故方差发生了变化故选D3、A【解析】分析:先根据平均数的定义
11、确定出x的值,再根据方差公式进行计算即可求出答案详解:根据题意,得:=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为 (66)2+(76)2+(36)2+(96)2+(56)2=4,故选A点睛:此题考查了平均数和方差的定义平均数是所有数据的和除以数据的个数方差是一组数据中各数据与它们的平均数的差的平方的平均数4、B【解析】四边形ABCD是正方形,A=B=90,AGE+AEG=90,BFE+FEB=90,GEF=90,GEA+FEB=90,AGE=FEB,AEG=EFB,AEGBFE,又AE=BE,AE2=AGBF=2,AE=(舍负),GF2=GE2+EF2
12、=AG2+AE2+BE2+BF2=1+2+2+4=9,GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明AEGBFE5、A【解析】试题分析:从上面看是一行3个正方形故选A考点:三视图6、A【解析】【分析】作BDAC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用ACx轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值【详解】作BDAC于D,如图,ABC为等腰直角三角形,AC=AB=2,BD=AD=CD=,ACx轴,C(,2),把C(,2)代入y=得k=2=4,故选A【点睛】本题考查了等腰直角三
13、角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.7、C【解析】连接OC、OD,根据正六边形的性质得到COD60,得到COD是等边三角形,得到OCCD,根据题意计算即可【详解】连接OC、OD,六边形ABCDEF是正六边形,COD60,又OCOD,COD是等边三角形,OCCD,正六边形的周长:圆的直径6CD:2CD3,故选:C【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键8、D【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为
14、整数,据此判断即可【详解】28600=2.861故选D【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键9、D【解析】根据实数的运算法则即可一一判断求解.【详解】有理数的0次幂,当a=0时,a0=0;为同底数幂相乘,底数不变,指数相加,正确;中22= ,原式错误;为有理数的混合运算,正确;为合并同类项,正确故选D.10、B【解析】由条件可以得出BPQDKMCNH,可以求出BPQ与DKM的相似比为,BPQ与CNH相似比为,由相似三角形的性质,就可以求出,从而可以求出【详解】矩形AEHC是由三个全等矩形拼成的,AB=BD=CD,AEBF
15、DGCH,BQP=DMK=CHN,ABQADM,ABQACH,EF=FG= BD=CD,ACEH,四边形BEFD、四边形DFGC是平行四边形, BEDFCG,BPQ=DKM=CNH, 又BQP=DMK=CHN,BPQDKM,BPQCNH,即,即,解得:,故选:B【点睛】本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、k1【解析】分析:根据方程的系数结合根的判别式0,即可得出关于k的一元一次不等式,解之即可得出结论详解:关于x的一元二次方程x2+1x-k=0有
16、实数根,=12-11(-k)=16+1k0,解得:k-1故答案为k-1点睛:本题考查了根的判别式,牢记“当0时,方程有实数根”是解题的关键12、增大【解析】根据二次函数的增减性可求得答案【详解】二次函数y=x2的对称轴是y轴,开口方向向上,当y随x的增大而增大.故答案为:增大.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.13、5【解析】作点A关于直线CD的对称点E,作EPAC于P,交CD于点Q,此时QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解决问题【详解】解:作点A关于直线CD的对称点E,作EPAC于P,交CD于点Q四边形ABCD是矩形
17、,ADC=90,DQAE,DE=AD,QE=QA,QA+QP=QE+QP=EP,此时QA+QP最短(垂线段最短),CAB=30,DAC=60,在RtAPE中,APE=90,AE=2AD=10,EP=AEsin60=10=5故答案为5【点睛】本题考查矩形的性质、最短问题、锐角三角函数等知识,解题的关键是利用对称以及垂线段最短找到点P、Q的位置,属于中考常考题型14、80【解析】【分析】先求出AQI在050的频数,再根据%,求出百分比.【详解】由图可知AQI在050的频数为10,所以,空气质量类别为优和良的天数共占总天数的百分比为:%=80% 故答案为80【点睛】本题考核知识点:数据的分析.解题关
18、键点:从统计图获取信息,熟记百分比计算方法.15、110【解析】解:1+2=180,ab,3=4,又3=110,4=110故答案为11016、【解析】与同时成立, 故只有x24=0,即x=2,又x20,x=2,y=,4y3x=1(6)=5,4y3x的平方根是故答案:三、解答题(共8题,共72分)17、1【解析】通过已知等式化简得到未知量的关系,代入目标式子求值.【详解】(yz)1+(xy)1+(zx)1=(y+z1x)1+(z+x1y)1+(x+y1z)1(yz)1(y+z1x)1+(xy)1(x+y1z)1+(zx)1(z+x1y)1=2,(yz+y+z1x)(yzyz+1x)+(xy+x+
19、y1z)(xyxy+1z)+(zx+z+x1y)(zxzx+1y)=2,1x1+1y1+1z11xy1xz1yz=2,(xy)1+(xz)1+(yz)1=2x,y,z均为实数,x=y=z18、 (1) b2 (2)1【解析】分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根详解:(1) 解:原式a22abb2a22ab b2 ;(2) 解:, 解得:x1, 经检验 x1为原方程的根, 所以原方程的解为x1点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型理解
20、计算法则是解题的关键分式方程最后必须要进行验根19、赚了520元【解析】(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目(实际售价当次进价)求出二次赚的钱数,再分别相加即可得出答案【详解】(1)设第一次购书的单价为x元,根据题意得:+10,解得:x5,经检验,x5是原方程的解,答:第一次购书的进价是5元;(2)第一次购书为12005240(本),第二次购书为240+10250(本),第一
21、次赚钱为240(75)480(元),第二次赚钱为200(751.2)+50(70.451.2)40(元),所以两次共赚钱480+40520(元),答:该老板两次售书总体上是赚钱了,共赚了520元【点睛】此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键20、(1)20%;(2)12.1【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅
22、量,2017年的人均借阅量,进一步求得a的值至少是多少试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=2.2(舍去)答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)108001310=8(本)129601440=9(本)(98)8100%=12.1%故a的值至少是12.1考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题21、(1)40(2)126,1(3)940名【解析】(1
23、)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;(2)利用360乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解【详解】(1)学生总数是24(20%8%)=200(人),则a=2008%=16,b=20020%=40;(2)n=360=126C组的人数是:20025%=1;(3)样本D、E两组的百分数的和为125%20%8%=47%,200047%=940(名)答估计成绩优秀的学生有940名【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出
24、正确的判断和解决问题22、15cm【解析】试题分析:设细线OB的长度为xcm,作ADOB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在RtAOD中,由三角函数得出方程,解方程即可试题解析:设细线OB的长度为xcm,作ADOB于D,如图所示:ADM=90,ANM=DMN=90,四边形ANMD是矩形,AN=DM=14cm,DB=145=9cm,OD=x9,在RtAOD中,cosAOD=,cos66=0.40,解得:x=15,OB=15cm23、(1)(2)详见解析;(3).【解析】(1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察
25、找到函数值的取值范围,即可求得OBC周长C的取值范围【详解】经过测量,时,y值为根据题意,画出函数图象如下图:根据图象,可以发现,y的取值范围为:,故答案为.【点睛】本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义24、(1)60,30;(2)300;(3) 【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)利用样本估计总体的方法,即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A的情况,再利用概率公式求解即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:3050%=60(人);了解部分的人数为60(15+30+10)=5,扇形统计图中“了解”部分所对应扇形的圆心角为:360=30;故答案为60,30;(2)根据题意得:900=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人,故答案为300;(3)画树状图如下:所有等可能的情况有6种,其中抽到女生A的情况有2种,所以P(抽到女生A)=【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图用到的知识点为:概率=所求情况数与总情况数之比