《山东省滨州市沾化县2023届中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省滨州市沾化县2023届中考适应性考试数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,直线被直线所截,下列条件中能判定的是( )ABCD2某青年排球队12名队员年龄情况如下:年龄1819202122人数14322则这12名队
2、员年龄的众数、中位数分别是( )A20,19B19,19C19,20.5D19,203在ABC中,C90,tanA,ABC的周长为60,那么ABC的面积为()A60B30C240D1204计算-5+1的结果为( )A-6B-4C4D65已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()ABCD6如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P若点P的坐标为(2a,b+1),则a与b的数量关系为( )Aa=bB2a+b=1C2ab=1D2a+b=17平面上直线a、c与b相交
3、(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )A60B50C40D308按如图所示的方法折纸,下面结论正确的个数( )290;1AEC;ABEECF;BAE1A1 个B2 个C1 个D4 个9如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:3a+b0即图象在x轴的上方,x1故答案为x1三、解答题(共7小题,满分69分)18、(1)D(0,);(1)C(116,1118);(3)B(1+,0),(1,0).【解析】(1)设OD为x,则BD=AD=3,在RTODA中应用勾股
4、定理即可求解;(1)由题意易证BDCBOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CEAO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=BC,再利用特殊角的三角函数可逐一求解.【详解】()设OD为x,点A(3,0),点B(0,),AO=3,BO=AB=6折叠BD=DA在RtADO中,OA1+OD1=DA19+OD1=(OD)1OD=D(0,)()折叠BDC=CDO=90CDOA且BD=AC,BD=18OD=(18)=18tanABO=,ABC=30,
5、即BAO=60tanABO=,CD=116D(116,1118)()如图:过点C作CEAO于ECEAOOE=1,且AO=3AE=1,CEAO,CAE=60ACE=30且CEAOAC=1,CE=BC=ABACBC=61=4若点B落在A点右边,折叠BC=BC=4,CE=,CEOABE=OB=1+B(1+,0)若点B落在A点左边,折叠BC=BC=4,CE=,CEOABE=OB=1B(1,0)综上所述:B(1+,0),(1,0)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B点的两种情况是解题关键.19、(1)A(1,0),B(0,1),D(1,0)(2)一次函数的解析式为
6、反比例函数的解析式为【解析】解:(1)OA=OB=OD=1,点A、B、D的坐标分别为A(1,0),B(0,1),D(1,0)。(2)点A、B在一次函数(k0)的图象上,解得。一次函数的解析式为。点C在一次函数y=x+1的图象上,且CDx轴,点C的坐标为(1,2)。又点C在反比例函数(m0)的图象上,m=12=2。反比例函数的解析式为。(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标。(2)将A、B两点坐标分别代入,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入可确定反比例函数的解析式。20、6.58米【解析】试题分析:过A点作A
7、ECD于E在RtABE中,根据三角函数可得AE,BE,在RtADE中,根据三角函数可得DE,再根据DB=DEBE即可求解试题解析:过A点作AECD于E 在RtABE中,ABE=62 AE=ABsin62=250.88=22米,BE=ABcos62=250.47=11.75米, 在RtADE中,ADB=50, DE=18米,DB=DEBE6.58米 故此时应将坝底向外拓宽大约6.58米考点:解直角三角形的应用-坡度坡角问题21、见解析【解析】根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x,由x()2+4可得当x=2,y有最小值,则可求篱笆长【详解】根据题意:一边为x米,
8、面积为4,则另一边为米,篱笆长为y=2(x)=2xx()2+()2=()2+4,x4,2x1,当x=2时,y有最小值为1,由此小强确定篱笆长至少为1米故答案为:y=2x,2,1【点睛】本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式22、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使SACP4,见解析;(3)见解析【解析】(1)根据坐标轴上点的特点建立方程求解,即可得出结论;(2)在直线AC下方轴x上一点,使SACH4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,
9、即可得出结论;(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,再由得出,进而求出,同理可得,再根据,即可得出结论【详解】(1)针对于抛物线,令x0,则,令y0,则,解得,x1或x3,综上所述:,;(2)由(1)知,BMFM,直线AC的解析式为:,联立抛物线解析式得:,解得:或,如图1,设H是直线AC下方轴x上一点,AHa且SACH4,解得:,过H作lAC,直线l的解析式为,联立抛物线解析式,解得,即:在直线AC下方的抛物线上不存在点P,使;(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,设,直线DE的解析式为,联立直线DE的解析式与抛物线解析式联立,得,DGx轴,DGO
10、M,即,同理可得,即,直线DE的解析式为,直线DE必经过一定点【点睛】本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.23、水坝原来的高度为12米【解析】试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可试题解析:设BC=x米,在RtABC中,CAB=180EAC=50,AB=,在RtEBD中,i=DB:EB=1:1,BD=BE,CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水坝原来的高度为12米.考点:解直角三角形的应用,坡度.2
11、4、(1)EF是O的切线,理由详见解析;(1)详见解析;(3)O的半径的长为1【解析】(1)连接OE,根据等腰三角形的性质得到A=AEO,B=BEF,于是得到OEG=90,即可得到结论;(1)根据含30的直角三角形的性质证明即可;(3)由AD是O的直径,得到AED=90,根据三角形的内角和得到EOD=60,求得EGO=30,根据三角形和扇形的面积公式即可得到结论【详解】解:(1)连接OE,OA=OE,A=AEO,BF=EF,B=BEF,ACB=90,A+B=90,AEO+BEF=90,OEG=90,EF是O的切线;(1)AED=90,A=30,ED=AD,A+B=90,B=BEF=60,BEF+DEG=90,DEG=30,ADE+A=90,ADE=60,ADE=EGD+DEG,DGE=30,DEG=DGE,DG=DE,DG=DA;(3)AD是O的直径,AED=90,A=30,EOD=60,EGO=30,阴影部分的面积 解得:r1=4,即r=1,即O的半径的长为1【点睛】本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键