《山东省济南历下区2023届中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《山东省济南历下区2023届中考数学模拟预测题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图1,在ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是( )
2、APDBPBCPEDPC2如图,圆O是等边三角形内切圆,则BOC的度数是()A60B100C110D1203港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为()A35.578103B3.5578104C3.5578105D0.355781054某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )ABCD5某运动会颁奖台如图所示,它的主视图是( )ABCD6如图,点P(x,y)(x0)是反比例函数y=(k0)的图象上的一个动点,以点P为圆心,O
3、P为半径的圆与x轴的正半轴交于点A,若OPA的面积为S,则当x增大时,S的变化情况是()AS的值增大BS的值减小CS的值先增大,后减小DS的值不变7下列四个图形中,既是轴对称图形又是中心对称图形的是()ABCD8下列运算中,计算结果正确的是()Aa2a3=a6 Ba2+a3=a5 C(a2)3=a6 Da12a6=a29如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于( )ABCD10若3x3y,则下列不等式中一定成立的是 ( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,在RtABC中,C=90,A=30,BC=2,C的半
4、径为1,点P是斜边AB上的点,过点P作C的一条切线PQ(点Q是切点),则线段PQ的最小值为_12已知是方程组的解,则3ab的算术平方根是_13一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_个14如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=_15一次函数y=kx+b的图象如图所示,当y0时,x的取值范围是_16在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在 区域的可能性最大(填A或B或C)17在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完
5、全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_个.三、解答题(共7小题,满分69分)18(10分)边长为6的等边ABC 中,点D ,E 分别在AC ,BC 边上,DEAB,EC 2如图1,将DEC 沿射线EC 方向平移,得到DEC,边DE与AC 的交点为M ,边CD与ACC的角平分线交于点N.当CC多大时,四边形MCND为菱形?并说明理由如图2,将DEC 绕点C 旋转(00即图象在x轴的上方,x1故答案为x116、A【解析】试题分析:由题意得:SASBSC,故落在A区域的可能性大考点: 几何概率17、1.【解析】由摸到红球的频率稳定在25%附近得出口袋中得
6、到红色球的概率,进而求出白球个数即可【详解】设白球个数为:x个,摸到红色球的频率稳定在25%左右,口袋中得到红色球的概率为25%,=,解得:x=1,故白球的个数为1个故答案为:1【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键三、解答题(共7小题,满分69分)18、 (1) 当CC=时,四边形MCND是菱形,理由见解析;(2)AD=BE,理由见解析;【解析】(1)先判断出四边形MCND为平行四边形,再由菱形的性质得出CN=CM,即可求出CC;(2)分两种情况,利用旋转的性质,即可判断出ACDBCE即可得出结论;先判断出点A,C,P三点共线,先求出CP,A
7、P,最后用勾股定理即可得出结论【详解】(1)当CC=时,四边形MCND是菱形理由:由平移的性质得,CDCD,DEDE,ABC是等边三角形,B=ACB=60,ACC=180-ACB=120,CN是ACC的角平分线,DEC=ACC=60=B,DEC=NCC,DECN,四边形MCND是平行四边形,MEC=MCE=60,NCC=NCC=60,MCE和NCC是等边三角形,MC=CE,NC=CC,EC=2,四边形MCND是菱形,CN=CM,CC=EC=;(2)AD=BE,理由:当180时,由旋转的性质得,ACD=BCE,由(1)知,AC=BC,CD=CE,ACDBCE, AD=BE,当=180时,AD=A
8、C+CD,BE=BC+CE,即:AD=BE,综上可知:AD=BE如图连接CP,在ACP中,由三角形三边关系得,APAC+CP,当点A,C,P三点共线时,AP最大,如图1,在DCE中,由P为DE的中点,得APDE,PD=,CP=3,AP=6+3=9,在RtAPD中,由勾股定理得,AD=【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND是平行四边形,解(2)的关键是判断出点A,C,P三点共线时,AP最大19、(1)25件;(2)见解析;(3)B班的获奖率高;(4).【解析】试题分析:(1)直接
9、利用扇形统计图中百分数,进而求出B班参赛作品数量;(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量;(3)分别求出各班的获奖百分率,进而求出答案;(4)利用树状统计图得出所有符合题意的答案进而求出其概率试题解析:(1)由题意可得:100(135%20%20%)=25(件),答:B班参赛作品有25件;(2)C班提供的参赛作品的获奖率为50%,C班的参赛作品的获奖数量为:10020%50%=10(件),如图所示:;(3)A班的获奖率为:100%=40%,B班的获奖率为:100%=44%,C班的获奖率为:=50%;D班的获奖率为:100%=40%,故C班的获奖率高;(4)如
10、图所示:,故一共有12种情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,求抽到A、B两班的概率为:=考点:1列表法与树状图法;2扇形统计图;3条形统计图20、(1)见详解;(2)4或4.【解析】(1)根据关于x的方程x2(m2)x(2m1)=0的根的判别式的符号来证明结论.(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:当该直角三角形的两直角边是2、3时,当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.【详解】解:(1)证明:=(m2)24(2m1)=(m2)24,在实数范围内,
11、m无论取何值,(m2)2+440,即0.关于x的方程x2(m2)x(2m1)=0恒有两个不相等的实数根.(2)此方程的一个根是1,121(m2)(2m1)=0,解得,m=2,则方程的另一根为:m21=2+1=3.当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为13=4.当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为13=4.21、(1)见解析;(2)四边形BFGN是菱形,理由见解析.【解析】(1)过F作FHBE于点H,可证明四边形BCFH为矩形,可得到BHCF,且H为BE中点,可得BE2CF;(2)由
12、条件可证明ABNHFE,可得BNEF,可得到BNGF,且BNFG,可证得四边形BFGN为菱形【详解】(1)证明:过F作FHBE于H点,在四边形BHFC中,BHFCBHBCF90,所以四边形BHFC为矩形,CFBH,BFEF,FHBE,H为BE中点,BE2BH,BE2CF;(2)四边形BFGN是菱形证明:将线段EF绕点F顺时针旋转90得FG,EFGF,GFE90,EFHBFHGFB90BNFG,NBFGFB180,NBAABCCBFGFB180,ABC90,NBACBFGFB1809090,由BHFC是矩形可得BCHF,BFHCBF,EFH90GFBBFH90GFBCBFNBA,由BHFC是矩形
13、可得HFBC,BCAB,HFAB,在ABN和HFE中,ABNHFE,NBEF,EFGF,NBGF,又NBGF,NBFG是平行四边形,EFBF,NBBF,平行四边NBFG是菱形点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键在(2)中证得ABNHFE是解题的关键22、 【解析】先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果【详解】原式= =1+ =1+= 当x=2cos30+tan45=2+1=+1时=【点睛】本题主要考查了分式的加减及锐角三角函数值解决本题的关键是掌握分式的运算法则和运算顺序23、(1)证明
14、见解析;(2)m 的值为1或2【解析】(1)计算根的判别式的值可得(m+1)21,由此即可证得结论;(2)根据题意得到 x=2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可【详解】(1)证明:=(m+3)22(m+2)=(m+1)21,无论实数 m 取何值,方程总有两个实数根;(2)解:方程有一个根的平方等于 2,x=2 是原方程的根,当 x=2 时,22(m+3)+m+2=1解得m=1;当 x=2 时,2+2(m+3)+m+2=1,解得m=2综上所述,m 的值为 1 或2【点睛】本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点24
15、、(1)y=(x0);(2)S与t的函数关系式为:S=3t+9(0t3);S=9(t3);当S=时,对应的t值为或6;(3)当t=或或3时,使FBO为等腰三角形【解析】(1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式(2)由题意得P(t,),然后分别从当点P1在点B的左侧时,S=t(-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)=9-去分析求解即可求得答案;(3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案【详解】解:(1)正方形OABC的面积为9,点B的坐标为:(3,3),点B在反比例函数y=(k0,x0)的图象上
16、,3=,即k=9,该反比例函数的解析式为:y= y=(x0);(2)根据题意得:P(t,),分两种情况:当点P1在点B的左侧时,S=t(3)=3t+9(0t3);若S=,则3t+9=,解得:t=;当点P2在点B的右侧时,则S=(t3)=9;若S=,则9=,解得:t=6;S与t的函数关系式为:S=3t+9(0t3);S=9(t3);当S=时,对应的t值为或6;(3)存在若OB=BF=3,此时CF=BC=3,OF=6,6=,解得:t=;若OB=OF=3,则3=,解得:t= ;若BF=OF,此时点F与C重合,t=3;当t=或或3时,使FBO为等腰三角形【点睛】此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用