山东省济南市平阴县2023届中考数学模拟预测题含解析.doc

上传人:lil****205 文档编号:88000376 上传时间:2023-04-19 格式:DOC 页数:19 大小:582KB
返回 下载 相关 举报
山东省济南市平阴县2023届中考数学模拟预测题含解析.doc_第1页
第1页 / 共19页
山东省济南市平阴县2023届中考数学模拟预测题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《山东省济南市平阴县2023届中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《山东省济南市平阴县2023届中考数学模拟预测题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列各式中正确的是()A =3 B =3 C =3 D2将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()Ay=(x+2)25 By=(x+2)2+5 Cy=(x2)25 Dy=(x2)2+53一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A B C D 4有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方

3、体的个数为()A2B3C4D55下列计算正确的是()A2x+3x=5xB2x3x=6xC(x3)2=5Dx3x2=x6已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )A20cm2B20cm2C10cm2D5cm27在实数 ,0.21, , ,0.20202中,无理数的个数为()A1B2C3D48李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时)22.533.54学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是( )A众数是8B中位数是3C平均数是3D方差是0.349某校航模小分队年龄情况如表所示,

4、则这12名队员年龄的众数、中位数分别是()年龄(岁)1213141516人数12252A2,14岁B2,15岁C19岁,20岁D15岁,15岁10一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )ABCD11函数y自变量x的取值范围是( )Ax1Bx1且x3Cx3D1x312已知关于x的二次函数yx22x2,当axa+2时,函数有最大值1,则a的值为()A1或1B1或3C1或3D3或3二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,点A,B在反比例函数y(x0)的图象上,点C,D在反比例函数y(k0)的图象上,

5、ACBDy轴,已知点A,B的横坐标分别为1,2,OAC与ABD的面积之和为,则k的值为_14若a,b互为相反数,则a2b2=_15同时掷两粒骰子,都是六点向上的概率是_16对于函数y= ,当函数y-3时,自变量x的取值范围是_ .17为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_18如图,PA、PB是O的切线,A、B为切点,AC是O的直径,P= 40,则BAC= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知反比例函数y=(x0)的图象与一次函数y=x+4的图象

6、交于A和B(6,n)两点求k和n的值;若点C(x,y)也在反比例函数y=(x0)的图象上,求当2x6时,函数值y的取值范围20(6分)如图,AD是等腰ABC底边BC上的高,点O是AC中点,延长DO到E,使AEBC,连接AE求证:四边形ADCE是矩形;若AB17,BC16,则四边形ADCE的面积 若AB10,则BC 时,四边形ADCE是正方形21(6分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C(1)求证:ACD=B;(2)如图2,BDC的平分线分别交AC,BC于点E,F,求CEF的度数22(8分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制

7、作1200个大小相同的宣传栏现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?23(8分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60方向上,航行12海里到达B点,这时测得小岛P在北偏东45方向上如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由24(10分)如图,在电线杆上的C处引拉线C

8、E、CF固定电线杆,拉线CE和地面成60角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号)25(10分)如图,直线y=x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D(1)求抛物线y=x2+bx+c的解析式(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2x11结合函数的图象,求x3的取值范围;若三个点P、Q、N中恰好有一

9、点是其他两点所连线段的中点,求m的值26(12分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,(1)求出的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PCPD的最小值(不必说明理由)27(12分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最

10、后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】原式利用平方根、立方根定义计算即可求出值【详解】解:A、原式=3,不符合题意;B、原式=|-3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2-=,符合题意,故选:D【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键2、A【解析】直接根据“上加下减,左加右减”的原则进行解答即可【详解】抛物线y=x2的顶点坐标为(0

11、,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(2,1),所以,平移后的抛物线的解析式为y=(x+2)21故选:A【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键3、B【解析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【详解】依题意得P(朝上一面的数字是偶数)=故选B.【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.4、C【解析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C5、A【解析】依据合并同类项法则、

12、单项式乘单项式法则、积的乘方法则进行判断即可【详解】A、2x3x5x,故A正确;B、2x3x6x2,故B错误;C、(x3)2x6,故C错误;D、x3与x2不是同类项,不能合并,故D错误故选A【点睛】本题主要考查的是整式的运算,熟练掌握相关法则是解题的关键6、C【解析】圆锥的侧面积=底面周长母线长2,把相应数值代入,圆锥的侧面积=2252=10故答案为C7、C【解析】在实数,0.21, , , ,0.20202中,根据无理数的定义可得其中无理数有,共三个故选C8、B【解析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出

13、中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可【详解】解: A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=,所以此选项不正确;D、S2=(23.35)2+2(2.53.35)2+8(33.35)2+6(3.53.35)2+3(43.35)2=0.2825,所以此选项不正确;故选B【点睛】本题考查方差;加权平均数;中位数;众数9、D【解析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的

14、一个数(或两个数的平均数)为中位数【详解】解:数据1出现了5次,最多,故为众数为1;按大小排列第6和第7个数均是1,所以中位数是1故选D【点睛】本题主要考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数10、A【解析】让黄球的个数除以球的总个数即为所求的概率【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是故选:A【点睛】本题考查概率的基本计算,用到的知识点为:概率等于

15、所求情况数与总情况数之比11、B【解析】由题意得,x-10且x-30,x1且x3.故选B.12、A【解析】分析:详解:当axa2时,函数有最大值1,1x22x2,解得: ,即-1x3, a=-1或a+2=-1, a=-1或1,故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x在整个取值范围内,函数值y才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),

16、将面积进行转换SOACSCOMSAOM,SABDS梯形AMNDS梯形AAMNB进而求解【详解】解:过A作x轴垂线,过B作x轴垂线,点A,B在反比例函数y(x0)的图象上,点A,B的横坐标分别为1,2,A(1,1),B(2,),ACBDy轴,C(1,k),D(2,),OAC与ABD的面积之和为,SABDS梯形AMNDS梯形AAMNB,k1,故答案为1【点睛】本题考查反比例函数的性质,k的几何意义能够将三角形面积进行合理的转换是解题的关键14、1【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案【详解】a,b互为相反数,a+b=1,a2b2=(a+b)(ab)=1,故答案为

17、1【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键15、【解析】同时掷两粒骰子,一共有66=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可.【详解】解:都是六点向上的概率是.【点睛】本题考查了概率公式的应用.16、-x0【解析】根据反比例函数的性质:y随x的增大而减小去解答.【详解】解:函数y= 中,y随x的增大而减小,当函数y-3时又函数y= 中,故答案为:-x0.【点睛】此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.17、【解析】试题解析:305000用科学记数法表示为:故答案为18、20【解析】根据切线的性质可知PAC

18、90,由切线长定理得PAPB,P40,求出PAB的度数,用PACPAB得到BAC的度数【详解】解:PA是O的切线,AC是O的直径,PAC90PA,PB是O的切线,PAPBP40,PAB(180P)2(18040)270,BACPACPAB907020故答案为20【点睛】本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)n=1,k=1(2)当2x1时,1y2【解析】【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值

19、;(2)由k=10结合反比例函数的性质,即可求出:当2x1时,1y2【详解】(1)当x=1时,n=1+4=1,点B的坐标为(1,1)反比例函数y=过点B(1,1),k=11=1;(2)k=10,当x0时,y随x值增大而减小,当2x1时,1y2【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.20、 (1)见解析;(2)1; .【解析】试题分析:(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出ADC=90,根据矩形的判定得出即可;(2)求出DC,

20、根据勾股定理求出AD,根据矩形的面积公式求出即可;要使ADCE是正方形,只需要ACDE,即DOC=90,只需要OD2+OC2=DC2,即可得到BC的长试题解析:(1)证明:AEBC,AEO=CDO又AOE=COD,OA=OC,AOECOD,OE=OD,而OA=OC,四边形ADCE是平行四边形AD是BC边上的高,ADC=90ADCE是矩形(2)解:AD是等腰ABC底边BC上的高,BC=16,AB=17,BD=CD=8,AB=AC=17,ADC=90,由勾股定理得:AD=12,四边形ADCE的面积是ADDC=128=1当BC=时,DC=DB=ADCE是矩形,OD=OC=2OD2+OC2=DC2,D

21、OC=90,ACDE,ADCE是正方形点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中21、(1)详见解析;(2)CEF=45【解析】试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出DCOACB90,然后根据等角的余角相等即可得出结论;(2)根据三角形的外角的性质证明CEF=CFE即可求解试题解析:(1)证明:如图1中,连接OCOAOC,12,CD是O切线,OCCD,DCO90,3290,AB是直径,1B90,3B(2)解:CEFECDCDE,CFEBFDB,CDEFDB,

22、ECDB,CEFCFE,ECF90,CEFCFE4522、甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏【解析】设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可【详解】解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏根据题意得: 解得:x=1经检验:x=1是原方程的解且符合实际问题的意义1.2x=1.21=2答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏【点睛】此题考查了分式方程的应用,找出等量关系为两广告公司

23、的工作时间的差为10天是解题的关键23、有触礁危险,理由见解析.【解析】试题分析:过点P作PDAC于D,在RtPBD和RtPAD中,根据三角函数AD,BD就可以用PD表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险试题解析:有触礁危险理由:过点P作PDAC于D设PD为x,在RtPBD中,PBD=90-45=45BD=PD=x在RtPAD中,PAD=90-60=30AD=AD=AB+BDx=12+xx=6(+1)18渔船不改变航线继续向东航行,有触礁危险【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解

24、题的前提和关键24、CE的长为(4+)米【解析】由题意可先过点A作AHCD于H在RtACH中,可求出CH,进而CD=CH+HD=CH+AB,再在RtCED中,求出CE的长【详解】过点A作AHCD,垂足为H,由题意可知四边形ABDH为矩形,CAH=30,AB=DH=1.5,BD=AH=6,在RtACH中,tanCAH=,CH=AHtanCAH,CH=AHtanCAH=6tan30=6=2(米),DH=1.5,CD=2+1.5,在RtCDE中,CED=60,sinCED=,CE=(4+)(米),答:拉线CE的长为(4+)米考点:解直角三角形的应用-仰角俯角问题25、(2)y=x24x+3;(2)2

25、x34,m的值为或2【解析】(2)由直线y=x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)先求得抛物线的顶点坐标为D(2,2),当直线l2经过点D时求得m=2;当直线l2经过点C时求得m=3,再由x2x22,可得2y33,即可2x3+33,所以2x34;分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.【详解】(2)在y=x+3中,令x=2,则y=3;令y=2,则x=3;得B(3,2),C(2,3),将点B(3,2),C(2,3)的坐标代入y=x2+bx+

26、c得:,解得 y=x24x+3;(2)直线l2平行于x轴,y2=y2=y3=m,如图,y=x24x+3=(x2)22,顶点为D(2,2),当直线l2经过点D时,m=2;当直线l2经过点C时,m=3x2x22,2y33,即2x3+33,得2x34,如图,当直线l2在x轴的下方时,点Q在点P、N之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QNx2x22,x3x2=x2x2,即 x3=2x2x2,l2x轴,即PQx轴,点P、Q关于抛物线的对称轴l2对称,又抛物线的对称轴l2为x=2,2x2=x22,即x2=4x2,x3=3x24,将点Q(x2,y2)的坐标代入y=x24x

27、+3得y2=x224x2+3,又y2=y3=x3+3x224x2+3=x3+3,x224x2=(3x24)即 x22x24=2,解得x2=,(负值已舍去),m=()24+3=如图,当直线l2在x轴的上方时,点N在点P、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ由上可得点P、Q关于直线l2对称,点N在抛物线的对称轴l2:x=2,又点N在直线y=x+3上,y3=2+3=2,即m=2故m的值为或2【点睛】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识在(2)中注意待定系数法的应用;在(2)注意利用数形

28、结合思想;在(2)注意分情况讨论本题考查知识点较多,综合性较强,难度较大26、(2)2;(2)y=x+2;(3)【解析】(2)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D(0,-4),连接CD交x轴于P,此时PC+PD的值最小,最小值=CD的长【详解】解:(2)反比例函数y=的图象上的点横坐标与纵坐标的积相同,A(2,2),B(-2,-2),C(3,2)k=2(2)设直线AB的解析式为y=mx+n,则有,解得,直线AB的解析式为y=x+2(3)C、D关于直线AB对称,D(0,4)作D关于x轴的对称点D(0,-4),连接CD交x轴于P,此时PC

29、+PD的值最小,最小值=CD=【点睛】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题27、(1)120件;(2)150元【解析】试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件.由题意可得:,解得,经检验是原方程的根.(2)设每件衬衫的标价至少是元.由(1)得第一批的进价为:(元/件),第二批的进价为:(元)由题意可得:解得:,所以,即每件衬衫的标价至少是150元.考点:1、分式方程的应用 2、一元一次不等式的应用.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁