《四川省达州市达川区2023年中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省达州市达川区2023年中考猜题数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图是某几何体的三视图及相关数据,则该几何体的全面积是()A15B24C20D102某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比
2、将会( )A平均数和中位数不变B平均数增加,中位数不变C平均数不变,中位数增加D平均数和中位数都增大3下列说法错误的是( )A必然事件的概率为1B数据1、2、2、3的平均数是2C数据5、2、3、0的极差是8D如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖4下列各式:3+3=6;=1;+=2;=2;其中错误的有( )A3个B2个C1个D0个5下列四个图形中,是中心对称图形的是( )ABCD6平面直角坐标系中的点P(2m,m)在第一象限,则m的取值范围在数轴上可表示为( )ABCD7如图,平行四边形 ABCD 中, E为 BC 边上一点,以 AE 为边作正方形AEFG,若 ,
3、则 的度数是 ABCD8下列计算正确的是()A(2a)22a2Ba6a3a2C2(a1)22aDaa2a29已知圆心在原点O,半径为5的O,则点P(-3,4)与O的位置关系是( )A在O内 B在O上C在O外 D不能确定10如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(3,2),则该圆弧所在圆心坐标是()A(0,0)B(2,1)C(2,1)D(0,1)二、填空题(共7小题,每小题3分,满分21分)11定义一种新运算:x*y=,如2*1=3,则(4*2)*(1)=_12如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交A
4、D边于点F,连结DM若BAD=120,AE=2,则DM=_13如图,BD是O的直径,CBD30,则A的度数为_14因式分解a36a2+9a=_15若关于x的方程=0有增根,则m的值是_16如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心大于MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是_17已知扇形的弧长为,圆心角为45,则扇形半径为_三、解答题(共7小题,满分69分)18(10分)在等腰RtABC中,ACB=90,AC=BC,点D是边BC上任意一点,连接AD,过点C作CEAD于点E(1)如图1,若BAD
5、=15,且CE=1,求线段BD的长;(2)如图2,过点C作CFCE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM19(5分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:成绩x分人数频率25x3040.0830x3580.1635x40a0.3240x45bc45x50100.2(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数20(8分)如图,
6、抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=1,P为抛物线上第二象限的一个动点(1)求抛物线的解析式并写出其顶点坐标;(2)当点P的纵坐标为2时,求点P的横坐标;(3)当点P在运动过程中,求四边形PABC面积最大时的值及此时点P的坐标 21(10分)已知:如图,ABC=DCB,BD、CA分别是ABC、DCB 的平分线求证:AB=DC22(10分)计算1423(12分)如图,半圆D的直径AB4,线段OA7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m当半圆D与数轴相切时,m 半圆D与数轴有两个公共点,设另一个公共点是C直接写出m的取值范围是 当B
7、C2时,求AOB与半圆D的公共部分的面积当AOB的内心、外心与某一个顶点在同一条直线上时,求tanAOB的值24(14分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”请你用列表法(或画树状图)求小宇“略胜一筹”的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】解:根据三视图得到该几何体为圆锥,其
8、中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=()2=9,圆锥的侧面积=56=15,所以圆锥的全面积=9+15=24故选B点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长也考查了三视图2、B【解析】本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数【详解】解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然;由于这51个数据按从小到大的顺序
9、排列的次序完全没有变化,所以中位数不变故选B【点睛】本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响3、D【解析】试题分析:A概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B数据1、2、2、3的平均数是=2,本项正确;C这些数据的极差为5(3)=8,故本项正确;D某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选D考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件4、A【解析】3+3=6,错误,无法计算; =1,错误;+=2不能计算
10、;=2,正确.故选A.5、D【解析】试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D考点:中心对称图形6、B【解析】根据第二象限中点的特征可得: ,解得: .在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征7、A【解析】分析:首先求出AEB,再利用三角形内角和定理求出B,最后利用平行四边形的性质得D=B即可解决问题详解:四边形ABCD是正方形,AEF=90,CEF=15,AEB=180-90-15=75,
11、B=180-BAE-AEB=180-40-75=65,四边形ABCD是平行四边形,D=B=65故选A点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型8、C【解析】解:选项A,原式=;选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D, 原式=故选C9、B.【解析】试题解析:OP=5,根据点到圆心的距离等于半径,则知点在圆上故选B考点:1.点与圆的位置关系;2.坐标与图形性质10、C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心点A的坐标为(3,
12、2),点O的坐标为(2,1)故选C二、填空题(共7小题,每小题3分,满分21分)11、-1【解析】利用题中的新定义计算即可求出值【详解】解:根据题中的新定义得:原式=*(1)=3*(1)=1故答案为1【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键12、【解析】作辅助线,构建直角DMN,先根据菱形的性质得:DAC=60,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长【详解】解:过M作MNAD于N,四边形ABCD是菱形, EFAC,AE=AF=2,AFM=30,AM=1,RtAMN中,AMN=30, AD=AB=2AE=4, 由勾股定理得:
13、 故答案为【点睛】本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30所对的直角边是斜边的一半13、60【解析】解:BD是O的直径,BCD=90(直径所对的圆周角是直角),CBD=30,D=60(直角三角形的两个锐角互余),A=D=60(同弧所对的圆周角相等);故答案是:6014、a(a-3)2【解析】根据因式分解的方法与步骤,先提取公因式,再根据完全平方公式分解即可.【详解】解:故答案为:.【点睛】本题考查因式分解的方法与步骤,熟练掌握方法与步骤是解答关键.15、2【解析】去分母得,m-1-x=0.方程有增根,x=1, m-1-1=0, m
14、=2.16、a+b=1【解析】试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1.考点:1角平分线;2平面直角坐标系.17、1【解析】根据弧长公式l=代入求解即可【详解】解:,故答案为1【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=三、解答题(共7小题,满分69分)18、 (1) 2 ;(2)见解析【解析】分析:(1)先求得:CAE=45-15=30,根据直角三角形30角的性质可得AC=2CE=2,再得ECD=90-60=30,设ED=x,则CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的长;(2)如图2,连接CM,先证明AC
15、EBCF,则BFC=AEC=90,证明C、M、B、F四点共圆,则BCM=MFB=45,由等腰三角形三线合一的性质可得AM=BM详解:(1)ACB=90,AC=BC,CAB=45,BAD=15,CAE=4515=30,RtACE中,CE=1,AC=2CE=2,RtCED中,ECD=9060=30,CD=2ED,设ED=x,则CD=2x,CE=x,x=1,x=,CD=2x=,BD=BCCD=ACCD=2;(2)如图2,连接CM,ACB=ECF=90,ACE=BCF,AC=BC,CE=CF,ACEBCF,BFC=AEC=90,CFE=45,MFB=45,CFM=CBA=45,C、M、B、F四点共圆,
16、BCM=MFB=45,ACM=BCM=45,AC=BC,AM=BM点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30角的性质和勾股定理,第二问有难度,构建辅助线,证明ACEBCF是关键19、(1)50;(2)详见解析;(3)220.【解析】(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【详解】解:(1)40.08=50(名)
17、答:此次抽查了50名学生的成绩;(2)a=500.32=16(名),b=50481610=12(名),c=10.080.160.320.2=0.24,如图所示:(3)500(0.24+0.2)=5000.44=220(名)答:本次测试九年级学生中成绩优秀的人数是220名【点睛】本题主要考查数据的收集、 处理以及统计图表。20、(1)二次函数的解析式为,顶点坐标为(1,4);(2)点P横坐标为1;(3)当时,四边形PABC的面积有最大值,点P()【解析】试题分析: (1)已知抛物线 与轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=1,由此列出方程组,解方程组求得a、b、c的值
18、,即可得抛物线的解析式,把解析式化为顶点式,直接写出顶点坐标即可;(2)把y=2代入解析式,解方程求得x的值,即可得点P的横坐标,从而求得点P的坐标;(3)设点(,),则 ,根据得出四边形PABC与x之间的函数关系式,利用二次函数的性质求得x的值,即可求得点P的坐标.试题解析:(1)抛物线 与轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=1, ,解得:,二次函数的解析式为 =,顶点坐标为(1,4)(2)设点P(,2),即=2,解得=1(舍去)或=1,点P(1,2).(3)设点(,),则 , 当时,四边形PABC的面积有最大值.所以点P().点睛:本题是二次函数综合题,主要考
19、查学生对二次函数解决动点问题综合运用能力,动点问题为中考常考题型,注意培养数形结合思想,培养综合分析归纳能力,解决这类问题要会建立二次函数模型,利用二次函数的性质解决问题.21、平分平分,在与中,【解析】分析:根据角平分线性质和已知求出ACB=DBC,根据ASA推出ABCDCB,根据全等三角形的性质推出即可解答:证明:AC平分BCD,BC平分ABC,DBC=ABC,ACB=DCB,ABC=DCB,ACB=DBC,在ABC与DCB中,ABCDCB,AB=DC22、1【解析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案【详解】原式=14+27=116+27=1【点睛】本题考查了实数的运算
20、,解题的关键是熟练掌握运算顺序23、(1);(2);AOB与半圆D的公共部分的面积为;(3)tanAOB的值为或【解析】(1)根据题意由勾股定理即可解答(2)根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可如图,连接DC,得出BCD为等边三角形,可求出扇形ADC的面积,即可解答(3)根据题意如图1,当OBAB时,内心、外心与顶点B在同一条直线上,作AHOB于点H,设BHx,列出方程求解即可解答如图2,当OBOA时,内心、外心与顶点O在同一条直线上,作AHOB于点H,设BHx,列出方程求解即可解答【详解】(1)当半圆与数轴相切时,ABOB,由勾
21、股定理得m ,故答案为 (2)半圆D与数轴相切时,只有一个公共点,此时m,当O、A、B三点在数轴上时,m7+411,半圆D与数轴有两个公共点时,m的取值范围为故答案为如图,连接DC,当BC2时,BCCDBD2,BCD为等边三角形,BDC60,ADC120,扇形ADC的面积为 , ,AOB与半圆D的公共部分的面积为 ;(3)如图1,当OBAB时,内心、外心与顶点B在同一条直线上,作AHOB于点H,设BHx,则72(4+x)242x2,解得x ,OH ,AH ,tanAOB,如图2,当OBOA时,内心、外心与顶点O在同一条直线上,作AHOB于点H,设BHx,则72(4x)242x2,解得x ,OH
22、,AH,tanAOB综合以上,可得tanAOB的值为或【点睛】此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线24、(1);(2)P(小宇“略胜一筹”).【解析】分析:(1)由题意可知,小宇从甲箱中任意摸出一个球,共有3种等可能结果出现,其中结果为3的只有1种,由此可得小宇从甲箱中任取一个球,刚好摸到“标有数字3”的概率为;(2)根据题意通过列表的方式列举出小宇和小静摸球的所有等可能结果,然后根据表中结果进行解答即可.详解:(1)P(摸出标有数字是3的球).(2)小宇和小静摸球的所有结果如下表所示:小静小宇4563(3,4)(3,5)(3,6)4(4,4)(4,5)(4,6)5(5,4)(5,5)(5,6)从上表可知,一共有九种可能,其中小宇所摸球的数字比小静的大1的有一种,因此P(小宇“略胜一筹”).点睛:能正确通过列表的方式列举出小宇在甲箱中任摸一个球和小静在乙箱中任摸一个球的所有等可能结果,是正确解答本题第2小题的关键.