《四川省达川区市级名校2023年中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省达川区市级名校2023年中考猜题数学试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,四边形ABCD是菱形,对角线AC,BD交于点O,于点H,且DH与AC交于G,则OG长度为ABCD2甲乙两同学均从同一本书的第一页开始,按照顺序逐页依次在每页上写一个数,甲同学在第1页写1,第2页写3,第3页写1,每一页写的数均比前
2、一页写的数多2;乙同学在第1页写1,第2页写6,第3页写11,每一页写的数均比前一页写的数多1若甲同学在某一页写的数为49,则乙同学在这一页写的数为()A116B120C121D1263我国作家莫言获得诺贝尔文学奖之后,他的代表作品蛙的销售量就比获奖之前增长了180倍,达到2100000册把2100000用科学记数法表示为()A0.21108B21106C2.1107D2.11064如图,ABC内接于O,AD为O的直径,交BC于点E,若DE=2,OE=3,则tanACBtanABC=( )A2B3C4D55如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与
3、原长方形相似,则原长方形纸片的边应满足的条件是( )ABCD6如图中任意画一个点,落在黑色区域的概率是()ABCD507下列图形中,既是轴对称图形又是中心对称图形的是ABCD8已知实数a、b满足,则ABCD9如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BEEDDC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s若P,Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2)已知y与t的函数图象如图2,则下列结论错误的是( )AAE=6cmBC当0t10时,D当t=12s时,PBQ是等腰三角形10下列运算结果正确的是()Aa3+a4=a7Ba4a3
4、=aCa3a2=2a3D(a3)3=a6二、填空题(本大题共6个小题,每小题3分,共18分)11对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:=10,=0.02;机床乙:=10,=0.06,由此可知:_(填甲或乙)机床性能好.12如图,矩形ABCD中,AB1,BC2,点P从点B出发,沿BCD向终点D匀速运动,设点P走过的路程为x,ABP的面积为S,能正确反映S与x之间函数关系的图象是( )ABCD13在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n_14同时掷两个质地均匀的骰子,观察向上一面的点
5、数,两个骰子的点数相同的概率为 15一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0y2 时,x的取值范围21(8分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:车型起步公里数起步价格超出起步公里数后的单价普通燃油型313元2.3元/公里纯电动型38元2元/公里张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到
6、单位的路程22(10分)如图,AB是O的直径,点C是弧AB的中点,点D是O外一点,AD=AB,AD交O于F,BD交O于E,连接CE交AB于G(1)证明:C=D;(2)若BEF=140,求C的度数;(3)若EF=2,tanB=3,求CECG的值23(12分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:品名猕猴桃芒果批发价元千克2040零售价元千克2650他购进的猕猴桃和芒果各多少千克?如果猕猴桃和芒果全部卖完,他能赚多少钱?24如图,在ABC中,AB=AC,点P、D分别是BC、AC边上的点,且APD
7、=B,求证:ACCD=CPBP;若AB=10,BC=12,当PDAB时,求BP的长参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题解析:在菱形中,所以,在中,因为,所以,则,在中,由勾股定理得,由可得,即,所以故选B.2、C【解析】根据题意确定出甲乙两同学所写的数字,设甲所写的第n个数为49,根据规律确定出n的值,即可确定出乙在该页写的数【详解】甲所写的数为 1,3,1,7,49,;乙所写的数为 1,6,11,16,设甲所写的第n个数为49,根据题意得:491+(n1)2,整理得:2(n1)48,即n124,解得:n21,则乙所写的第21个数为1+(211)11+241
8、121,故选:C【点睛】考查了有理数的混合运算,弄清题中的规律是解本题的关键3、D【解析】2100000=2.1106.点睛:对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.4、C【解析】如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案【详解】如图,连接BD、CD在和中,同理可得:,即为O的直径故选:C【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相
9、似三角形是解题关键5、B【解析】由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论【详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,小长方形与原长方形相似,故选B【点睛】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键6、B【解析】抓住黑白面积相等,根据概率公式可求出概率.【详解】因为,黑白区域面积相等,所以,点落在黑色区域的概率是. 故选B【点睛】本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.7、D【解析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点
10、旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.8、C【解析】根据不等式的性质进行判断【详解】解:A、,但不一定成立,例如:,故本选项错误;B、,但不一
11、定成立,例如:,故本选项错误;C、时,成立,故本选项正确;D、时,成立,则不一定成立,故本选项错误;故选C【点睛】考查了不等式的性质要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以或除以同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变9、D【解析】(1)结论A正确,理由如下:解析函数图象可知,BC=10cm,ED=4cm,故AE=ADED=BCED=104=6cm(2)结论B正确,理由如下:如图,连接EC,过点E作EFBC于点F,由函数图象可知,BC=BE=10cm,EF=1(3)结论C正确,理由如下:如图,过
12、点P作PGBQ于点G,BQ=BP=t,(4)结论D错误,理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如图,连接NB,NC此时AN=1,ND=2,由勾股定理求得:NB=,NC=BC=10,BCN不是等腰三角形,即此时PBQ不是等腰三角形故选D10、B【解析】分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可【详解】A. a3+a4a7 ,不是同类项,不能合并,本选项错误; B. a4a3=a4-3=a;,本选项正确; C. a3a2=a5;,本选项错误; D.(a3)3=a9,本选项错误.故选B【点睛】本题考查的是同底数
13、幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单二、填空题(本大题共6个小题,每小题3分,共18分)11、甲【解析】试题分析:根据方差的意义可知,方差越小,稳定性越好,由此即可求出答案试题解析:因为甲的方差小于乙的方差,甲的稳定性好,所以甲机床的性能好故答案为甲考点:1.方差;2.算术平均数12、C【解析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿BCD向终点D匀速运动,则当0x2,s=x当2x3,s=1所以刚开始的时候为正比例函数s=x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图
14、像,关键在于读懂题意,弄清楚P的运动状态13、1【解析】根据白球的概率公式=列出方程求解即可【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)=解得:n=1,故答案为1【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=14、【解析】试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)
15、(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)一共有36种等可能的结果,两个骰子的点数相同的有6种情况,两个骰子的点数相同的概率为:=故答案为考点:列表法与树状图法15、7 2或144【解析】五次操作后,发现赛车回到出发点,正好走了一个正五边形,因为原地逆时针方向旋转角a(0180),那么朝左和朝右就是两个不同的结论所以角=(5-2)1805=108,则180-108=72
16、或者角=(5-2)1805=108,180-722=14416、1【解析】根据分式为1的条件得到方程,解方程得到答案【详解】由题意得,x1,故答案是:1【点睛】本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1这两个条件缺一不可三、解答题(共8题,共72分)17、(1)8m2;(2)68m2;(3) 40,8【解析】(1)根据中心对称图形性质和,可得,即可解当时,4个全等直角三角形的面积;(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,求出自变
17、量的取值范围,再根据二次函数的增减性即可解答;(3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.【详解】(1) 为长方形和菱形的对称中心,当时,(2),-, 解不等式组得,结合图像,当时,随的增大而减小.当时, 取得最大值为(3)当时,S=4x2=16 m2,=12 m2,=68m2,总费用:162m+125n+682m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.【点睛】本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.1
18、8、(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件【解析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值(2)设生产甲种产品用x分,则生产乙种产品用(25860-x)分,分别求出甲乙两种生产多少件产品【详解】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分(2)设生产甲种产品共用x分,则生产乙种产品用(25860-x)分则生产甲种产品件,生产乙种产品件w总额=1.5+2.8=0.1x
19、+2.8=0.1x+1680-0.14x=-0.04x+1680,又60,得x900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件【点睛】考查了一次函数和二元一次方程组的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解19、(1)证明见解析;(2)EAD是等腰三角形证明见解析;(3). 【解析】试题分析:(1)连接OG,则由已知易
20、得OGE=AHK=90,由OG=OA可得AGO=OAG,从而可得KGE=AKH=EKG,这样即可得到KE=GE;(2)设FGB=,由AB是直径可得AGB=90,从而可得KGE=90-,结合GE=KE可得EKG=90-,这样在GKE中可得E=2,由FGB=ACH可得ACH=2,这样可得E=ACH,由此即可得到CAEF;(3)如下图2,作NPAC于P,由(2)可知ACH=E,由此可得sinE=sinACH=,设AH=3a,可得AC=5a,CH=4a,则tanCAH=,由(2)中结论易得CAK=EGK=EKG=AKC,从而可得CK=AC=5a,由此可得HK=a,tanAKH=,AK=a,结合AK=可
21、得a=1,则AC=5;在四边形BGKH中,由BHK=BKG=90,可得ABG+HKG=180,结合AKH+GKG=180,ACG=ABG可得ACG=AKH,在RtAPN中,由tanCAH=,可设PN=12b,AP=9b,由tanACG=tanAKH=3可得CP=4b,由此可得AC=AP+CP=5,则可得b=,由此即可在RtCPN中由勾股定理解出CN的长.试题解析:(1)如图1,连接OGEF切O于G,OGEF,AGO+AGE=90,CDAB于H,AHD=90,OAG=AKH=90,OA=OG,AGO=OAG,AGE=AKH,EKG=AKH,EKG=AGE,KE=GE(2)设FGB=,AB是直径,
22、AGB=90,AGE=EKG=90,E=180AGEEKG=2,FGB=ACH,ACH=2,ACH=E,CAFE(3)作NPAC于PACH=E,sinE=sinACH=,设AH=3a,AC=5a,则CH=,tanCAH=,CAFE,CAK=AGE,AGE=AKH,CAK=AKH,AC=CK=5a,HK=CKCH=4a,tanAKH=3,AK=,AK=,a=1AC=5,BHD=AGB=90,BHD+AGB=180,在四边形BGKH中,BHD+HKG+AGB+ABG=360,ABG+HKG=180,AKH+HKG=180,AKH=ABG,ACN=ABG,AKH=ACN,tanAKH=tanACN=
23、3,NPAC于P,APN=CPN=90,在RtAPN中,tanCAH=,设PN=12b,则AP=9b,在RtCPN中,tanACN=3,CP=4b,AC=AP+CP=13b,AC=5,13b=5,b=,CN=20、(1)y12x4,y2;(2)x1或0x1【解析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可【详解】解:(1)把点A(1,6)代入反比例函数(m0)得:m=16=6,将B(a,2)代入得:,a=1,B
24、(1,2),将A(1,6),B(1,2)代入一次函数y1=kx+b得:,;(2)由函数图象可得:x1或0x1【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键21、8.2 km【解析】首先设小明家到单位的路程是x千米,根据题意列出方程进行求解【详解】解:设小明家到单位的路程是x千米依题意,得13+2.3(x3)=8+2(x3)+0.8x解得:x=8.2答:小明家到单位的路程是8.2千米【点睛】本题考查一元一次方程的应用,找准等量关系是解题关键22、(1)见解析;(2)70;(3)1【解析】(1)先根据等边对等角得出B=D,即可得出结论;(2)先判断出DFE=B,进
25、而得出D=DFE,即可求出D=70,即可得出结论;(3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出ACGECA,即可得出结论【详解】(1)AB=AD,B=D,B=C,C=D;(2)四边形ABEF是圆内接四边形,DFE=B,由(1)知,B=D,D=DFE,BEF=140=D+DFE=2D,D=70,由(1)知,C=D,C=70;(3)如图,由(2)知,D=DFE,EF=DE,连接AE,OC,AB是O的直径,AEB=90,BE=DE,BE=EF=2,在RtABE中,tanB=3,AE=3BE=6,根据勾股定理得,AB=,OA=OC=AB=,点C是 的中点, ,AOC
26、=90,AC=OA=2,CAG=CEA,ACG=ECA,ACGECA,CECG=AC2=1【点睛】本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键23、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱【解析】设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;根据利润销售收入成本,即可
27、求出结论【详解】设购进猕猴桃x千克,购进芒果y千克,根据题意得:,解得:答:购进猕猴桃20千克,购进芒果30千克元答:如果猕猴桃和芒果全部卖完,他能赚420元钱【点睛】本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算24、(1)证明见解析;(2). 【解析】(2)易证APD=B=C,从而可证到ABPPCD,即可得到,即ABCD=CPBP,由AB=AC即可得到ACCD=CPBP;(2)由PDAB可得APD=BAP,即可得到BAP=C,从而可证到BAPBCA,然后运用相似三角形的性质即可求出BP的长解:(1)AB=AC,B=CAPD=B,APD=B=CAPC=BAP+B,APC=APD+DPC,BAP=DPC,ABPPCD,ABCD=CPBPAB=AC,ACCD=CPBP;(2)PDAB,APD=BAPAPD=C,BAP=CB=B,BAPBCA,AB=10,BC=12,BP=“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明ACCD=CPBP转化为证明ABCD=CPBP是解决第(1)小题的关键,证到BAP=C进而得到BAPBCA是解决第(2)小题的关键