安徽省宿州第四中学2022-2023学年中考冲刺卷数学试题含解析.doc

上传人:lil****205 文档编号:87999811 上传时间:2023-04-19 格式:DOC 页数:20 大小:1,010KB
返回 下载 相关 举报
安徽省宿州第四中学2022-2023学年中考冲刺卷数学试题含解析.doc_第1页
第1页 / 共20页
安徽省宿州第四中学2022-2023学年中考冲刺卷数学试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《安徽省宿州第四中学2022-2023学年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《安徽省宿州第四中学2022-2023学年中考冲刺卷数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1用配方法解方程x24x+10,配方后所得的方程是( )A(x2)23B(x+2)23C(x2)23D(x+2)232下列方程中,两根之和为2的是()Ax2+2x3=0Bx22x3=0Cx22x+3=0D4x22x3=03如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合

2、成一个无重叠的几何图形,其中轴对称图形有( )A3个;B4个;C5个;D6个4已知x+=3,则x2+=()A7B9C11D85下列各式中,计算正确的是 ( )ABCD6已知二次函数yax1+bx+c+1的图象如图所示,顶点为(1,0),下列结论:abc0;b14ac0;a1;ax1+bx+c1的根为x1x11;若点B(,y1)、C(,y1)为函数图象上的两点,则y1y1其中正确的个数是()A1B3C4D57估计的值在 ( )A4和5之间B5和6之间C6和7之间D7和8之间8下列计算中,正确的是()Aa3a=4a2B2a+3a=5a2C(ab)3=a3b3D7a314a2=2a9某校九年级(1)

3、班全体学生实验考试的成绩统计如下表:成绩(分)24252627282930人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A该班一共有40名同学B该班考试成绩的众数是28分C该班考试成绩的中位数是28分D该班考试成绩的平均数是28分10中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )A0.96107B9.6106C96105D9.6102二、填空题(本大题共6个小题,每小题3分,共18分)11如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是_.12如图

4、,已知矩形ABCD中,点E是BC边上的点,BE2,EC1,AEBC,DFAE,垂足为F则下列结论:ADFEAB;AFBE;DF平分ADC;sinCDF其中正确的结论是_(把正确结论的序号都填上)13已知一粒米的质量是1111121千克,这个数字用科学记数法表示为_14如图,在ABC中,AB=AC=2,BC=1点E为BC边上一动点,连接AE,作AEF=B,EF与ABC的外角ACD的平分线交于点F当EFAC时,EF的长为_15不等式组的整数解是_16如图,点D在O的直径AB的延长线上,点C在O上,且AC=CD,ACD=120,CD是O的切线:若O的半径为2,则图中阴影部分的面积为_三、解答题(共8

5、题,共72分)17(8分)某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图请你根据图中信息,回答下列问题:(1)求本次调查的学生人数,并补全条形统计图;(2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;(3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?18(8分)如图,已知抛物线yax2+bx+5经过A(5,0),B(4,3)两点,与x轴的另一个交

6、点为C,顶点为D,连结CD求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t当点P在直线BC的下方运动时,求PBC的面积的最大值;该抛物线上是否存在点P,使得PBCBCD?若存在,求出所有点P的坐标;若不存在,请说明理由19(8分)(5分)计算:20(8分)我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整)请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是 人,并将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则我校被

7、抽取的学生中有 人达标;(3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?21(8分)如图,直线l切O于点A,点P为直线l上一点,直线PO交O于点C、B,点D在线段AP上,连接DB,且ADDB(1)求证:DB为O的切线;(2)若AD1,PBBO,求弦AC的长22(10分)某数学兴趣小组为测量如图(所示的一段古城墙的高度,设计用平面镜测量的示意图如图所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处 已知ABBD、CDBD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这

8、段古城墙高度的方案 要求:面出示意图(不要求写画法);写出方案,给出简要的计算过程:给出的方案不能用到图的方法23(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当FAB=EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长24计算: +()2|1|(+1)0.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】方程变形后

9、,配方得到结果,即可做出判断【详解】方程,变形得:,配方得:,即故选A【点睛】本题考查的知识点是了解一元二次方程配方法,解题关键是熟练掌握完全平方公式2、B【解析】由根与系数的关系逐项判断各项方程的两根之和即可【详解】在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;在方程x2-2x-3=0中,两根之和等于2,故B符合题意;在方程x2-2x+3=0中,=(-2)2-43=-80,则该方程无实数根,故C不符合题意;在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,故选B【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键3、B【解

10、析】分析:直接利用轴对称图形的性质进而分析得出答案详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个 故选B 点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键4、A【解析】根据完全平方公式即可求出答案【详解】(x+)2=x2+2+9=2+x2+,x2+=7,故选A【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式.5、C【解析】接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案【详解】A、无法计算,故此选项错误;B、a2a3=a5,故此选项错误;C、a3a2=a,正确;D

11、、(a2b)2=a4b2,故此选项错误故选C【点睛】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键6、D【解析】根据二次函数的图象与性质即可求出答案【详解】解:由抛物线的对称轴可知:,由抛物线与轴的交点可知:,故正确;抛物线与轴只有一个交点,故正确;令,故正确;由图象可知:令,即的解为,的根为,故正确;,故正确;故选D【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.7、C【解析】根据 ,可以估算出位于哪两个整数之间,从而可以解答本题【详解】解: 即故选:C【点睛】本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法8

12、、C【解析】根据同底数幂的运算法则进行判断即可.【详解】解:A、a3a=3a2,故原选项计算错误;B、2a+3a=5a,故原选项计算错误;C、(ab)3=a3b3,故原选项计算正确;D、7a314a2=a,故原选项计算错误;故选C【点睛】本题考点:同底数幂的混合运算.9、D【解析】直接利用众数、中位数、平均数的求法分别分析得出答案【详解】解:A、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意;B、该班考试成绩的众数是28分,此选项正确,不合题意;C、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题意;D、该班考试成绩的平均数是:(242

13、+255+266+276+288+297+306)40=27.45(分),故选项D错误,符合题意故选D【点睛】此题主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键10、B【解析】试题分析:“960万”用科学记数法表示为9.6106,故选B考点:科学记数法表示较大的数二、填空题(本大题共6个小题,每小题3分,共18分)11、(,)【解析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标【详解】解:正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,OA:OD=2:3,点A的坐标为(1,0),即OA

14、=1,OD=,四边形ODEF是正方形,DE=OD=E点的坐标为:(,)故答案为:(,)【点睛】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键12、【解析】只要证明EABADF,CDF=AEB,利用勾股定理求出AB即可解决问题【详解】四边形ABCD是矩形,AD=BC,ADBC,B=90,BE=2,EC=1,AE=AD=BC=3,AB=,ADBC,DAF=AEB,DFAE,AFD=B=90,EABADF,AF=BE=2,DF=AB=,故正确,不妨设DF平分ADC,则ADF是等腰直角三角形,这个显然不可能,故错误,DAF+ADF=90,CDF+ADF=90,DA

15、F=CDF,CDF=AEB,sinCDF=sinAEB=,故错误,故答案为【点睛】本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型13、【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定【详解】解:1.111121=2.111-2故答案为:2.111-2【点睛】本题考查用科学记数法表示较小的数,一般形式为a11-n,其中1|a|11,n由原数左边起第一个不为零的数字前面的1的

16、个数所决定14、1+【解析】当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,即可得到AEBC,依据RtCFGRtCFH,可得CH=CG=,再根据勾股定理即可得到EF的长【详解】解:如图,当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,AEBC,CE=BC=2,又AC=2,AE=1,EG=,CG=,作FHCD于H,CF平分ACD,FG=FH,而CF=CF,RtCFGRtCFH,CH=CG=,设EF=x,则HF=GF=x-,RtEFH中,EH2+FH2=EF2,(2+)2+(x-)2=x2,解得x=1+

17、,故答案为1+【点睛】本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合15、1、0、1【解析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案【详解】,解不等式得:,解不等式得:,不等式组的解集为,不等式组的整数解为-1,0,1.故答案为:-1,0,1.【点睛】本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.16、 【解析】试题分析:连接OC,求出D和COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案连接OC

18、,AC=CD,ACD=120,CAD=D=30,DC切O于C,OCCD,OCD=90,COD=60,在RtOCD中,OCD=90,D=30,OC=2,CD=2,阴影部分的面积是SOCDS扇形COB=22=2,故答案为2考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.三、解答题(共8题,共72分)17、(1)共调查了50名学生;统计图见解析;(2)72;(3).【解析】(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数,先计算出最喜欢舞蹈类的人数,然后补全条形统计图;(2)用360乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;

19、(3)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解【详解】解:(1)1428%50,本次共调查了50名学生补全条形统计图如下(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数为36072.(3)设一班2名学生为数字“1”,“1”,二班2名学生为数字“2”,“2”,画树状图如下共有12种等可能的结果,其中抽取的2名学生恰好来自同一个班级的结果有4种,抽取的2名学生恰好来自同一个班级的概率P.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A

20、或事件B的概率也考查了统计图18、 (1)yx2+6x+5;(2)SPBC的最大值为;存在,点P的坐标为P(,)或(0,5)【解析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:yx+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(,),过该点与BC垂直的直线的k值为1,求出 直线BC中垂线的表达式为:yx4,同理直线CD的表达式为:y2x+2,、联立

21、并解得:x2,即点H(2,2),同理可得直线BH的表达式为:yx1,联立和yx2+6x+5并解得:x,即可求出P点;当点P(P)在直线BC上方时,根据PBCBCD求出BPCD,求出直线BP的表达式为:y2x+5,联立yx2+6x+5和y2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:yx2+6x+5,令y0,则x1或5,即点C(1,0);(2)如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:yx+1,设点G(t,t+1),则点P(t,t2+6t+5),SPBCPG(xCxB

22、)(t+1t26t5)t2t6,-0,SPBC有最大值,当t时,其最大值为;设直线BP与CD交于点H,当点P在直线BC下方时,PBCBCD,点H在BC的中垂线上,线段BC的中点坐标为(,),过该点与BC垂直的直线的k值为1,设BC中垂线的表达式为:yx+m,将点(,)代入上式并解得:直线BC中垂线的表达式为:yx4,同理直线CD的表达式为:y2x+2,联立并解得:x2,即点H(2,2),同理可得直线BH的表达式为:yx1,联立并解得:x或4(舍去4),故点P(,);当点P(P)在直线BC上方时,PBCBCD,BPCD,则直线BP的表达式为:y2x+s,将点B坐标代入上式并解得:s5,即直线BP

23、的表达式为:y2x+5,联立并解得:x0或4(舍去4),故点P(0,5);故点P的坐标为P(,)或(0,5)【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.19、【解析】试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答试题解析:原式=考点:1实数的运算;2零指数幂;3负整数指数幂;4特殊角的三角函数值20、(1)120,补图见解析;(2)96;(3)960人.【解析】(1)由“不合格”的人数除以占的百分比求出总人数,确定出“优秀”的人数,以及一般的百分比,补全统计图即可;(2)求出“一般”与“优秀”占的百分比,乘以总人数即可得到结果;(3)求出达标占的

24、百分比,乘以1200即可得到结果【详解】(1)根据题意得:2420%=120(人),则“优秀”人数为120(24+36)=60(人),“一般”占的百分比为100%=30%,补全统计图,如图所示:(2)根据题意得:36+60=96(人),则达标的人数为96人;(3)根据题意得:1200=960(人),则全校达标的学生有960人故答案为(1)120;(2)96人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21、(1)见解析;(2)AC1【解析】(1)要

25、证明DB为O的切线,只要证明OBD90即可(2)根据已知及直角三角形的性质可以得到PD2BD2DA2,再利用等角对等边可以得到ACAP,这样求得AP的值就得出了AC的长【详解】(1)证明:连接OD;PA为O切线,OAD90;在OAD和OBD中,OADOBD,OBDOAD90,OBBDDB为O的切线(2)解:在RtOAP中;PBOBOA,OP2OA,OPA10,POA602C,PD2BD2DA2,OPAC10,ACAP1【点睛】本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况22、(1)8m;(2)答案不唯一【解析】(1)根据入射角等于反射角可得 APB=CPD ,由 ABBD、

26、CDBD 可得到 ABP=CDP=90,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得APB=CPD,ABP=CDP=90,RtABPRtCDP, ,CD=8. 答:该古城墙的高度为8m(2)解:答案不唯一,如:如图, 在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为.即可测量这段古城墙AB的高度,过点D作DCAB于点C.在RtACD中,ACD=90,tan=,AC= tan,AB=AC+BC=tan+h【点睛】本题考查相似三角形性质的应用解题时关键是找出相似的三角形,然

27、后根据对应边成比例列出方程,建立适当的数学模型来解决问题23、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或. 【解析】分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,FAB=EDB, tanFAG=tanBDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.详解:(1)OB=OC=1,B(1,0),C(0,-1).,解得,抛物线的解析式为. =,点D的坐标为(2,-8). (2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FGx轴于点G,易求得OA=2,则AG=x+2

28、,FG=.FAB=EDB,tanFAG=tanBDE,即,解得,(舍去).当x=7时,y=,点F的坐标为(7,). 当点F在x轴下方时,设同理求得点F的坐标为(5,).综上所述,点F的坐标为(7,)或(5,). (3)点P在x轴上,根据菱形的对称性可知点P的坐标为(2,0).如图,当MN在x轴上方时,设T为菱形对角线的交点.PQ=MN,MT=2PT.设TP=n,则MT=2n. M(2+2n,n).点M在抛物线上,即.解得,(舍去).MN=2MT=4n=.当MN在x轴下方时,设TP=n,得M(2+2n,-n).点M在抛物线上,即.解得,(舍去).MN=2MT=4n=.综上所述,菱形对角线MN的长

29、为或. 点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,yax2bxc().列方程组求二次函数解析式.(2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.24、【解析】先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;【详解】解:原式 【点睛】考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁