《山东省潍坊广文中学2023年中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省潍坊广文中学2023年中考数学考试模拟冲刺卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1计算 的结果是( )Aa2B-a2Ca4D-a42已知x=2是关于x的一元二次方程x2x2a=0的一个解,则a的值为()A0B1C1D23下列几何体中,其三视图都是全等图形的是()A圆柱B圆
2、锥C三棱锥D球4如图,等腰直角三角形的顶点A、C分别在直线a、b上,若ab,1=30,则2的度数为()A30B15C10D205一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A172B171C170D1686扇形的半径为30cm,圆心角为120,用它做成一个圆锥的侧面,则圆锥底面半径为( )A10cmB20cmC10cmD20cm7如图,则的度数为( )A115B110C105D658如图,右侧立体图形的俯视图是( )A B C D9如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S
3、1+S2=()A3B4C5D610七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是( )A甲组同学身高的众数是160B乙组同学身高的中位数是161C甲组同学身高的平均数是161D两组相比,乙组同学身高的方差大11若55+55+55+55+5525n,则n的值为()A10B6C5D312左下图是一些完全相同的小正方体搭成的几何体的三视图 这个几何体只能是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,随机闭合开关,中的两个,能让两盏灯泡和同时发光的
4、概率为_14和平中学自行车停车棚顶部的剖面如图所示,已知AB16m,半径OA10m,高度CD为_m154的平方根是 16将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_17抛物线yx24x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是_18一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知在O中,AB是O的直径,AC8,BC1求O的面积;若D为O上一点,且ABD为等腰三角形,求CD的长20(6分)某校决定加强羽毛球、
5、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球乒乓球36排球足球12请根据以上图表信息解答下列问题:频数分布表中的 , ;在扇形统计图中,“排球”所在的扇形的圆心角为 度;全校有多少名学生选择参加乒乓球运动?21(6分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少
6、需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?22(8分)先化简,再求值:,其中.23(8分)计算:(1)2018+()2|2 |+4sin60;24(10分)如图,在四边形ABCD中,BAC=ACD=90,B=D(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BCCDDA运动至A点停止,则从运动开始经过多少时间,BEP为等腰三角形.25(10分)我们来定义一种新运算:对于任意实数 x、y,“”为 ab(a+1)(
7、b+1)1.(1)计算(3)9(2)嘉琪研究运算“”之后认为它满足交换律,你认为她的判断 ( 正确、错误)(3)请你帮助嘉琪完成她对运算“”是否满足结合律的证明 26(12分)如图,O是ABC的外接圆,点O在BC边上,BAC的平分线交O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P求证:PD是O的切线;求证:ABDDCP;当AB=5cm,AC=12cm时,求线段PC的长27(12分)如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点(1)求k和b的值;(2)点G是轴上一点,且以点、C、为顶点的三角形与相似,求点
8、G的坐标;(3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上如果存在,直接写出点E的坐标,如果不存在,试说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】直接利用同底数幂的乘法运算法则计算得出答案【详解】解:,故选D【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键2、C【解析】试题分析:把方程的解代入方程,可以求出字母系数a的值x=2是方程的解,422a=0,a=1故本题选C【考点】一元二次方程的解;一元二次方程的定义3、D【解析】分析: 任意方向上的视图都是全等图形的几何体
9、只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.4、B【解析】分析:由等腰直角三角形的性质和平行线的性质求出ACD=60,即可得出2的度数详解:如图所示:ABC是等腰直角三角形,BAC=90,ACB=45,1+BAC=30+90=120,ab,ACD=180-120=60,2=ACD-ACB=60-45=15;故选B点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质
10、,由平行线的性质求出ACD的度数是解决问题的关键5、C【解析】先把所给数据从小到大排列,然后根据中位数的定义求解即可.【详解】从小到大排列:150,164,168,168,172,176,183,185,中位数为:(168+172)2=170.故选C.【点睛】本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.6、A【解析】试题解析:扇形的弧长为:=20cm,圆锥底面半径为202=10cm,故选A考点:圆锥的计算7、A【解析】根据对顶角相等求
11、出CFB65,然后根据CDEB,判断出B115【详解】AFD65,CFB65,CDEB,B18065115,故选:A【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键8、A【解析】试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图9、D【解析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1【详解】点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,S
12、1+S1=4+4-11=2故选D10、D【解析】根据众数、中位数和平均数及方差的定义逐一判断可得【详解】A甲组同学身高的众数是160,此选项正确;B乙组同学身高的中位数是161,此选项正确;C甲组同学身高的平均数是161,此选项正确;D甲组的方差为,乙组的方差为,甲组的方差大,此选项错误故选D【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键11、D【解析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案【详解】解:55+55+55+55+55=25n,555=52n,则56=52n,解得:n=1故选D【点睛】此题主要考查了幂
13、的乘方运算,正确将原式变形是解题关键12、A【解析】试题分析:根据几何体的主视图可判断C不合题意;根据左视图可得B、D不合题意,因此选项A正确,故选A考点:几何体的三视图二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案【详解】解:画树状图得:由树状图得:共有6种结果,且每种结果的可能性相同,其中能让两盏灯泡同时发光的是闭合开关为:K1、K3与K3、K1共两种结果,能让两盏灯泡同时发光的概率,故答案为:【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状
14、图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比14、1【解析】由CDAB,根据垂径定理得到ADDB8,再在RtOAD中,利用勾股定理计算出OD,则通过CDOCOD求出CD【详解】解:CDAB,AB16,ADDB8,在RtOAD中,AB16m,半径OA10m,OD6,CDOCOD1061(m)故答案为1【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧也考查了切线的性质定理以及勾股定理15、1【解析】试题分析:,4的平方根是1故答案为1考点:平方根16、y=3x-1【解析】y=3x+1
15、的图象沿y轴向下平移2个单位长度,平移后所得图象对应的函数关系式为:y=3x+12,即y=3x1故答案为y=3x117、(3,0)【解析】把交点坐标代入抛物线解析式求m的值,再令y=0解一元二次方程求另一交点的横坐标【详解】把点(1,0)代入抛物线y=x2-4x+中,得m=6,所以,原方程为y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3抛物线与x轴的另一个交点的坐标是(3,0)故答案为(3,0).【点睛】本题考查了点的坐标与抛物线解析式的关系,抛物线与x轴交点坐标的求法本题也可以用根与系数关系直接求解18、【解析】首先求出一次函数y=kx+3与y轴的交点坐标;由于
16、函数与x轴的交点的纵坐标是0,可以设横坐标是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函数的解析式y=kx+3,从而求出k的值【详解】在y=kx+3中令x=0,得y=3,则函数与y轴的交点坐标是:(0,3);设函数与x轴的交点坐标是(a,0),根据勾股定理得到a2+32=25,解得a=4;当a=4时,把(4,0)代入y=kx+3,得k=;当a=-4时,把(-4,0)代入y=kx+3,得k=;故k的值为或【点睛】考点:本体考查的是根据待定系数法求一次函数解析式解决本题的关键是求出函数与y轴的交点坐标,然后根据勾股定理求得函数与x轴的交点坐标,进而求出k的值三、解答题:(本大题共9个小
17、题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)25;(2)CD1,CD27【解析】分析:(1)利用圆周角定理的推论得到C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即可得到答案;(2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.详解:(1)AB是O的直径,ACB=90,AB是O的直径,AC8,BC1,AB10,O的面积5225(2)有两种情况:如图所示,当点D位于上半圆中点D1时,可知ABD1是等腰直角三角形,且OD1AB,作CEAB垂足为E,CFOD1垂足为F,可得矩形CEOF,CE,OF= CE=,=,,;如图所示,当点D位于下半圆中点D2时,同理
18、可求.CD1,CD27点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.20、 (1)24,1;(2) 54;(3)360.【解析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解【详解】(1)抽取的人数是3630%120(人),则a12020%24,b120302436121故答案是:24,1;(2)“排球”所在的扇形的圆心角为36054,故答案是:
19、54;(3)全校总人数是12010%1200(人),则选择参加乒乓球运动的人数是120030%360(人)21、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析【解析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论【详解】(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+33x=550,x=50,经检验,符合题意,3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱
20、为(100y)个,根据题意得,意, y为正整数,y为50,51,52,共3中方案;有三种方案:温馨提示牌50个,垃圾箱50个,温馨提示牌51个,垃圾箱49个,温馨提示牌52个,垃圾箱48个,设总费用为w元W=50y+150(100y)=100y+15000,k=-100,w随y的增大而减小当y=52时,所需资金最少,最少是9800元【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键22、-1,-9.【解析】先去括号,再合并同类项;最后把x=-2代入即可【详解】原式,当x=-2时,原式-8-1=-9.【点睛】本题考查了整式的混合运算及化简求值,关键是先按运
21、算顺序把整式化简,再把对应字母的值代入求整式的值23、1.【解析】分析:本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果详解:原式=1+4-(2-2)+4,=1+4-2+2+2,=1点睛:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算24、(1)证明见解析;(2)从运动开始经过2s或s或s或s时,BEP为等腰三角形【解析】(1)根据内错角相等,得到两边平行,然后再根据三角形内角和等于180度得到另一对内错
22、角相等,从而证得原四边形是平行四边形;(2)分别考虑P在BC和DA上的情况求出t的值.【详解】解:(1)BAC=ACD=90,ABCD,B=D,B+BAC+ACB=D+ACD+DAC=180,DAC=ACB,ADBC,四边形ABCD是平行四边形(2)BAC=90,BC=5cm,AB=3cm,由勾股定理得:AC=4cm,即AB、CD间的最短距离是4cm,AB=3cm,AE=AB,AE=1cm,BE=2cm,设经过ts时,BEP是等腰三角形,当P在BC上时,BP=EB=2cm,t=2时,BEP是等腰三角形;BP=PE,作PMAB于M,BM=ME=BE=1cmcosABC=,BP=cm,t=时,BE
23、P是等腰三角形;BE=PE=2cm,作ENBC于N,则BP=2BN,cosB=,BN=cm,BP=,t=时,BEP是等腰三角形;当P在CD上不能得出等腰三角形,AB、CD间的最短距离是4cm,CAAB,CA=4cm,当P在AD上时,只能BE=EP=2cm,过P作PQBA于Q,四边形ABCD是平行四边形,ADBC,QAD=ABC,BAC=Q=90,QAPABC,PQ:AQ:AP=4:3:5,设PQ=4xcm,AQ=3xcm,在EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,x= ,AP=5x=cm,t=5+5+3=,答:从运动开始经过2s或s或s或s时,BEP为等腰三角形【点睛】本题主
24、要考查平行四边形的判定定理及一元二次方程的解法,要求学生能够熟练利用边角关系解三角形.25、(1)-21;(2)正确;(3)运算“”满足结合律【解析】(1)根据新定义运算法则即可求出答案(2)只需根据整式的运算证明法则ab=ba即可判断(3)只需根据整式的运算法则证明(ab)c=a(bc)即可判断【详解】(1)(-3)9=(-3+1)(9+1)-1=-21(2)ab=(a+1)(b+1)-1ba=(b+1)(a+1)-1,ab=ba,故满足交换律,故她判断正确;(3)由已知把原式化简得ab=(a+1)(b+1)-1=ab+a+b(ab)c=(ab+a+b)c=(ab+a+b+1)(c+1)-1
25、=abc+ac+ab+bc+a+b+ca(bc)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c(ab)c=a(bc)运算“”满足结合律【点睛】本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型26、(1)证明见解析;(2)证明见解析;(3)CP=16.9cm【解析】【分析】(1)先判断出BAC=2BAD,进而判断出BOD=BAC=90,得出PDOD即可得出结论;(2)先判断出ADB=P,再判断出DCP=ABD,即可得出结论;(3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=,最后用ABDDCP得出比例式求解即可得出结论
26、【详解】(1)如图,连接OD,BC是O的直径,BAC=90,AD平分BAC,BAC=2BAD,BOD=2BAD,BOD=BAC=90,DPBC,ODP=BOD=90,PDOD,OD是O半径,PD是O的切线;(2)PDBC,ACB=P,ACB=ADB,ADB=P,ABD+ACD=180,ACD+DCP=180,DCP=ABD,ABDDCP;(3)BC是O的直径,BDC=BAC=90,在RtABC中,BC=13cm,AD平分BAC,BAD=CAD,BOD=COD,BD=CD,在RtBCD中,BD2+CD2=BC2,BD=CD=BC=,ABDDCP,CP=16.9cm【点睛】本题考查了切线的判定、相
27、似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.27、 (1)k=-,b=1;(1) (0,1)和 【解析】分析:(1) 由直线经过点,可得由抛物线的对称轴是直线,可得,进而得到A、B、D的坐标,然后分两种情况讨论即可;(3)设E(a,),E关于直线AB的对称点E为(0,b),EE与AB的交点为P则EEAB,P为EE的中点,列方程组,求解即可得到a的值,进而得到答案详解:(1) 由直线经过点,可得由抛物线的对称轴是直线,可得 直线与x轴、y轴分别相交于点、,点的坐标是,点的坐标是抛物线的顶点是点,点的坐标是点是轴上一点,设点的坐标是BCG与BCD相似,又由题意知,BCG与相似有两种可能情况: 如果,那么,解得,点的坐标是如果,那么,解得,点的坐标是综上所述:符合要求的点有两个,其坐标分别是和 (3)设E(a,),E关于直线AB的对称点E为(0,b),EE与AB的交点为P,则EEAB,P为EE的中点, ,整理得:,(a-1)(a+1)=0,解得:a=1或a=1当a=1时,=;当a=1时,=;点的坐标是或点睛:本题是二次函数的综合题考查了二次函数的性质、解析式的求法以及相似三角形的性质解答(1)问的关键是要分类讨论,解答(3)的关键是利用两直线垂直则k的乘积为1和P是EE的中点