《江西省上饶市广信区2023年中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省上饶市广信区2023年中考数学考试模拟冲刺卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列计算正确的是()Aa+a=2aBb3b3=2b3Ca3a=a3D(a5)2=a72将一把直尺与一块三角板如图所示放置,若则2的度数为( )A50B110C130D1503某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计
2、划生产450台机器所需时间相同设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()ABCD4某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A赚了10元B赔了10元C赚了50元D不赔不赚5下列关于x的方程一定有实数解的是( )ABCD6某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)383940414243数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A平均数B中位数C众数D方差7下列说法正确的是()A3是相反数B3与3互为相反数C3
3、与互为相反数D3与互为相反数8菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A3.5B4C7D149如图,点P是AOB外的一点,点M,N分别是AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM2.5cm,PN3cm,MN4cm,则线段QR的长为( )A4.5cmB5.5cmC6.5cmD7cm10若代数式有意义,则实数x的取值范围是()Ax0Bx0Cx0D任意实数二、填空题(本大题共6个小题,每小题3分,共18分)11同一个圆的内接正方形和正三角形的边心距的比为_12如图,1,2
4、是四边形ABCD的两个外角,且1+2210,则A+D_度.13因式分解:9a212a+4_14有一个正六面体,六个面上分别写有16这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是_15如图,平行线AB、CD被直线EF所截,若2=130,则1=_16某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为_元.三、解答题(共8题,共72分)17(8分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5(1)求BC的长;(2)如果两条对角线长的和是20,求三角形AOD的周长18(
5、8分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为_;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200=108”,请你判断这种说法是否正确,并说明理由19(8分)已知:在O中,弦AB=AC,AD是O的直径求证:BD=CD20(8分)如图,直线y=x与双曲线y=(k0,x0)交于点A,将直
6、线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k0,x0)交于点B(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值21(8分)如图,在ABC中,ABC=90,BD为AC边上的中线(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CEBC于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形22(10分)如图,在ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CFBC,求证:四边形OCFE是平行四边形23(12分)已知:二次函数图象的顶点坐标是(3,5),
7、且抛物线经过点A(1,3)求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求ABC的面积24某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为 ;该年级报名参加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底
8、数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解【详解】A.a+a=2a,故本选项正确;B.,故本选项错误;C. ,故本选项错误;D.,故本选项错误.故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.2、C【解析】如图,根据长方形的性质得出EFGH,推出FCD=2,代入FCD=1+A求出即可【详解】EFGH,FCD=2,FCD=1+A,1=40,A=90,2=FCD=130,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键3、B【解析】设原计划平均每天生产x台机器,
9、则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可【详解】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:故选B【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程4、A【解析】试题分析:第一个的进价为:80(1+60%)=50元,第二个的进价为:80(120%)=100元,则802(50+100)=10元,即盈利10元.考点:一元一次方程的应用5、A【解析】根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即
10、可得【详解】Ax2-mx-1=0中=m2+40,一定有两个不相等的实数根,符合题意;Bax=3中当a=0时,方程无解,不符合题意;C由可解得不等式组无解,不符合题意;D有增根x=1,此方程无解,不符合题意;故选A【点睛】本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根6、B【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数故选:C点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的统计量有平均数、中位数、众数方差等,各
11、有局限性,因此要对统计量进行合理的选择和恰当的运用7、B【解析】符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确【详解】A、3和-3互为相反数,错误;B、3与-3互为相反数,正确;C、3与互为倒数,错误;D、3与-互为负倒数,错误;故选B【点睛】此题考查相反数问题,正确理解相反数的定义是解答此题的关键8、A【解析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB【详解】菱形ABCD的周长为28,AB=284=7,OB=ODH为AD边中点,OH是ABD的中位线,O
12、HAB7=3.1故选A【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键9、A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=25cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-25=25(cm),即可得出QR的长RN+NQ=3+25=35(cm)故选A考点:轴对称图形的性质10、C【解析】根据分式和二次根式有意义的条件进行解答【详解】 解:依题意得:x21且x1解得x1故选C【点睛】考查了分式有意义的条件和二次根式有意义的条件解题时,注意分母不等于零且被开方数是非负数二、填空题(
13、本大题共6个小题,每小题3分,共18分)11、【解析】先画出同一个圆的内接正方形和内接正三角形,设O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可【详解】设O的半径为r,O的内接正方形ABCD,如图,过O作OQBC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,四边形BACD是正方形,O是正方形ABCD的外接圆,O为正方形ABCD的中心,BOC=90,OQBC,OB=CO,QC=BQ,COQ=BOQ=45,OQ=OCcos45=R;设O的内接正EFG,如图,过O作OHFG于H,连接OG,即OH为正EFG的边心距,正EFG是O的外接圆,OGF=EGF=30,OH=OGsi
14、n30=R,OQ:OH=(R):(R)=:1,故答案为:1【点睛】本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键12、210.【解析】利用邻补角的定义求出ABC+BCD,再利用四边形内角和定理求得A+D.【详解】1+2210,ABC+BCD1802210150,A+D360150210.故答案为:210.【点睛】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出ABC+BCD是关键.13、(3a1)1【解析】直接利用完全平方公式分解因式得出答案【详解】9a1-11a+4=(3a-1)1故答案是:(3a1
15、)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键14、 【解析】投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,其概率是=【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=15、50【解析】利用平行线的性质推出EFC=2=130,再根据邻补角的性质即可解决问题.【详解】ABCD,EFC=2=130,1=180-EFC=50,故答案为50【点睛】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题16、28【
16、解析】设标价为x元,那么0.9x-21=2120%,x=28.三、解答题(共8题,共72分)17、 (1)8;(2)1.【解析】(1)由平行四边形的性质和已知条件易证AOECOF,所以可得AE=CF=3,进而可求出BC的长;(2)由平行四边形的性质:对角线互相平分可求出AO+OD的长,进而可求出三角形AOD的周长【详解】(1)四边形ABCD是平行四边形,ADBC,AO=CO,EAO=FCO,在AOE和COF中,AOECOF,AE=CF=3,BC=BF+CF=5+3=8;(2)四边形ABCD是平行四边形,AO=CO,BO=DO,AD=BC=8,AC+BD=20,AO+BO=10,AOD的周长=A
17、O+BO+AD=1【点睛】本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键18、(1)144;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.【解析】试题分析:(1)360(115%45%)=36040%=144;故答案为144;(2)“经常参加”的人数为:30040%=120人,喜欢篮球的学生人数为:120273320=12080=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200=160人;(4)
18、这个说法不正确理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人考点:条形统计图;扇形统计图19、证明见解析【解析】根据AB=AC,得到,于是得到ADB=ADC,根据AD是O的直径,得到B=C=90,根据三角形的内角和定理得到BAD=DAC,于是得到结论【详解】证明:AB=AC,ADB=ADC,AD是O的直径,B=C=90,BAD=DAC,BD=CD【点睛】本题考查了圆周角定理,熟记圆周角定理是解题的关键20、(1)k=b2+4b;(2)【解析】试题分析:(1)分别求出点B的坐标,即可
19、解答(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作ADx轴,BEx轴,CFBE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x试题解析:(1)将直线y=向上平移4个单位长度后,与y轴交于点C,平移后直线的解析式为y=+4,点B在直线y=+4上,B(b,b+4),点B在双曲线y=上,B(b,),令b+4=得(2)分别过点A、B作ADx轴,BEx轴,CFBE于点F,设A(3x,x),OA=3BC,BCOA,CFx轴,CF=OD,点A、B在双曲线y=上,3bb=,解得b=1,k=311=考点:反比例函数综合题21
20、、 (1)见解析;(2)见解析.【解析】(1)根据题意作图即可;(2)先根据BD为AC边上的中线,AD=DC,再证明ABDCED(AAS)得AB=EC,已知ABC=90即可得四边形ABCE是矩形【详解】(1)解:如图所示:E点即为所求;(2)证明:CEBC,BCE=90,ABC=90,BCE+ABC=180,ABCE,ABE=CEB,BAC=ECA,BD为AC边上的中线,AD=DC,在ABD和CED中,ABDCED(AAS),AB=EC,四边形ABCE是平行四边形,ABC=90,平行四边形ABCE是矩形【点睛】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定
21、与性质与矩形的性质.22、证明见解析.【解析】利用三角形中位线定理判定OEBC,且OE=BC结合已知条件CF=BC,则OE/CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论【详解】四边形ABCD是平行四边形,点O是BD的中点又点E是边CD的中点,OE是BCD的中位线,OEBC,且OE=BC又CF=BC,OE=CF又点F在BC的延长线上,OECF,四边形OCFE是平行四边形【点睛】本题考查了平行四边形的性质和三角形中位线定理此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理熟记相关定理并能应用是解题的关键.23、(1)y(x3)25
22、(2)5【解析】(1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解【详解】(1)设此抛物线的表达式为ya(x3)25,将点A(1,3)的坐标代入上式,得3a(13)25,解得 此抛物线的表达式为 (2)A(1,3),抛物线的对称轴为直线x3,B(5,3)令x0,则 ABC的面积【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.24、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解析】(1)参加丙组的人数为21人;(2)2110%=10人,则乙组人数=10-21-11=10人,如图:(3)设需从甲组抽调x名同学到丙组,根据题意得:3(11-x)=21+x解得x=1答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解