《山东省滨州市重点学校2023年中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省滨州市重点学校2023年中考数学最后冲刺模拟试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1某几何体由若干个大小相同的小正方体搭成,其主视图与左视
2、图如图所示,则搭成这个几何体的小正方体最少有()A4个B5个C6个D7个2如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,若BG=,则CEF的面积是()ABCD3如图,ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置如果ABC的面积为10,且sinA,那么点C的位置可以在( )A点C1处B点C2处C点C3处D点C4处4计算31的结果是()A2 B2 C4 D45设a,b是常数,不等式的解集为,则关于x的不等式的解集是( )ABCD6若m,n是一元二次方程x22x1=0的两个不同实数根,则代数式m2m+n的值是()A1B
3、3C3D17已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A10B14C10或14D8或108的一个有理化因式是()ABCD9如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是A B C D10如图,在中,边上的高是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11二次函数的图象如图所示,给出下列说法:;方程的根为,;当时,随值的增大而增大;当时,其中,正确的说法有_(请写出所有正确说法的序号)1
4、2比较大小: _1(填“”、“”或“”)13如图,在矩形ABCD中,E是AD上一点,把ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是_14已知二次函数yax2+bx+c中,函数y与自变量x的部分对应值如表所示:x54321y83010当y3时,x的取值范围是_15如图,在ABCD中,AC是一条对角线,EFBC,且EF与AB相交于点E,与AC相交于点F,3AE2EB,连接DF若SAEF1,则SADF的值为_16如图,四边形ACDF是正方形,和都是直角,且点三点共线,则阴影部分的面积是_三、解答题(共8题,共72分
5、)17(8分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读18(8分)先化简,再求值:a(a3b)+(a+b)2a(ab),其中a=1,b=19(8分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平
6、行于地面AD且到地面AD的距离分别为40cm、8cm为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计)20(8分)如图,在ABC中,ABAC,以AB为直径作半圆O,交BC于点D,连接AD,过点D作DEAC,垂足为点E,交AB的延长线于点F(1)求证:EF是O的切线(2)如果O的半径为5,sinADE,求BF的长21(8分)如图1,在四边形ABCD中,ADBC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90得到PQ(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的
7、值;(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留);(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长22(10分)如图,在ABC中,BAC90,ADBC于点D,BF平分ABC交AD于点E,交AC于点F,求证:AEAF23(12分)解不等式组,并将解集在数轴上表示出来24如图,已知AB是O的直径,CD与O相切于C,BECO(1)求证:BC是ABE的平分线;(2)若DC=8,O的半径OA=6,求CE的长参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数【详解】由主视图和左视图可确定所需正方体个数
8、最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键【详解】请在此输入详解!【点睛】请在此输入点睛!2、A【解析】解:AE平分BAD,DAE=BAE;又四边形ABCD是平行四边形,ADBC,BEA=DAE=BAE,AB=BE=6,BGAE,垂足为G,AE=2AG在RtABG中,AGB=90,AB=6,BG=,AG=2,AE=2AG=4;SABE=AEBG=BE=6,BC=AD=9,CE=BCBE=96=3,BE:CE=6:3=2:1,ABFC,ABEFCE,SABE
9、:SCEF=(BE:CE)2=4:1,则SCEF=SABE=故选A【点睛】本题考查1相似三角形的判定与性质;2平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键3、D【解析】如图:AB=5, D=4, , ,AC=4,在RTAD中,D,AD=8, A=,故答案为D.4、D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1故选D.5、C【解析】根据不等式的解集为x 即可判断a,b的符号,则根据a,b的符号,即可解不等式bx-a0【详解】解不等式,移项得: 解集为x ,且a0, 解不等式,移项得:bxa两边同时除以b得:x,即x- 故选C【点睛】此题考查解一元一次不等
10、式,掌握运算法则是解题关键6、B【解析】把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值【详解】解:若,是一元二次方程的两个不同实数根,故选B【点睛】本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式7、B【解析】试题分析: 2是关于x的方程x22mx+3m=0的一个根,224m+3m=0,m=4,x28x+12=0,解得x1=2,x2=1当1是腰时,2是底边,此时周长=1+1+2=2; 当1是底边时,2是腰,2+21,不能构成三角形 所以它的周长是2 考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质
11、8、B【解析】找出原式的一个有理化因式即可【详解】的一个有理化因式是,故选B【点睛】此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键9、A。【解析】如图,根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,当POAO,即PO为三角形OA边上的高时,APO的面积y最大。此时,由AB=2,根据勾股定理,得弦AP=x=。当x=时,APO的面积y最大,最大面积为y=。从而可排除B,D选项。又当AP=x=1时,APO为等边三角形,它的面积y,此时,点(1,)应在y=的一半上方,从而可排除C选项。故选A。10、D【解析】根据三角形的高线的定义解答【详解】根据高的定义,AF为
12、ABC中BC边上的高故选D【点睛】本题考查了三角形的高的定义,熟记概念是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据抛物线的对称轴判断,根据抛物线与x轴的交点坐标判断,根据函数图象判断【详解】解:对称轴是x=-=1,ab0,正确;二次函数y=ax2+bx+c的图象与x轴的交点坐标为(-1,0)、(3,0),方程x2+bx+c=0的根为x1=-1,x2=3,正确;当x=1时,y0,a+b+c0,错误;由图象可知,当x1时,y随x值的增大而增大,正确;当y0时,x-1或x3,错误,故答案为【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax2+bx
13、+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定12、【解析】根据算术平方根的定义即可求解【详解】解:1,1,1故答案为【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数13、 【解析】由题意易得四边形ABFE是正方形,设AB=1,CF=x,则有BC=x+1,CD=1, 四边形CDEF和矩形ABCD相似,CD:BC=FC:CD,即1:(x+1)=x:1,x=或x=(舍去), =,故答案为.【点睛】本题考查了折叠的性质,相似多边形的性质等,熟练掌握相似多边形的面积比等于相似比的平方是解题的关键.14、x4
14、或x1【解析】观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=1时,y=-3,然后写出y-3时,x的取值范围即可【详解】由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,且x=1时,y=-3,所以,y-3时,x的取值范围为x-4或x1故答案为x-4或x1【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解题的关键15、【解析】由3AE2EB,和EFBC,证明AEFABC,得=,结合SAEF1,可知再由=,得=,再根据SADF= SADC即可求解.【详解】解:3AE2EB,设AE=2a,BE=3a,EFBC,AE
15、FABC,=()2=()2=,SAEF1,SABC=,四边形ABCD为平行四边形,EFBC,=,=,SADF= SADC=,故答案是:【点睛】本题考查了图形的相似和平行线分线段成比例定理,中等难度,找到相似比是解题关键.16、8【解析】【分析】证明AECFBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】四边形ACDF是正方形,AC=FA,CAF=90,CAE+FAB=90,CEA=90,CAE+ACE=90,ACE=FAB,又AEC=FBA=90,AECFBA,CE=AB=4,S阴影=8,故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判
16、定与性质,三角形面积等,求出CE=AB是解题的关键.三、解答题(共8题,共72分)17、(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人【解析】(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.【详解】(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,总调查人数2020%10
17、0人;(2)参加娱乐的人数10040%40人,从条形统计图中得出参加阅读的人数为30人,“其它”类的人数10040302010人,所占比例1010010%,在扇形统计图中“其它”类的圆心角36010%36;(3)如图(4)估计一下全校课余爱好是阅读的学生约为3200960(人)【点睛】本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键18、 【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;【详解】解:原式=a23ab+a2+2ab+b2a2+ab=a2+b2,当a=1、b=时,原式=12+()2=1+=【点睛】考查了整式的加减-
18、化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键19、44cm【解析】解:如图,设BM与AD相交于点H,CN与AD相交于点G,由题意得,MH=8cm,BH=40cm,则BM=32cm,四边形ABCD是等腰梯形,AD=50cm,BC=20cm,EFCD,BEMBAH,即,解得:EM=1EF=EMNFBC=2EMBC=44(cm)答:横梁EF应为44cm根据等腰梯形的性质,可得AH=DG,EM=NF,先求出AH、GD的长度,再由BEMBAH,可得出EM,继而得出EF的长度20、(1)答案见解析;(2)【解析】试题分析:(1)连接OD,AB为O的直径得ADB=90,由AB=AC,根据等腰三
19、角形性质得AD平分BC,即DB=DC,则OD为ABC的中位线,所以ODAC,而DEAC,则ODDE,然后根据切线的判定方法即可得到结论;(2)由DAC=DAB,根据等角的余角相等得ADE=ABD,在RtADB中,利用解直角三角形的方法可计算出AD=8,在RtADE中可计算出AE=,然后由ODAE,得FDOFEA,再利用相似比可计算出BF试题解析:(1)证明:连结ODOD=OBODB=DBO又AB=ACDBO=CODB =COD AC又DEACDE ODEF是O的切线(2)AB是直径 ADB=90 ADC=90 即1+2=90 又C+2=90 1=C1 =3AD=8在RtADB中,AB=10BD
20、=6在又RtAED中,设BF=xOD AEODFAEF ,即,解得:x=21、(1) ;(2)5;(3)PB的值为或【解析】(1)如图1中,作AMCB用M,DNBC于N,根据题意易证RtABMRtDCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PHAD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13x,再根据全等三角形的性质可得对应边相等,即可求出PB
21、的值.【详解】解:(1)如图1中,作AMCB用M,DNBC于NDNM=AMN=90,ADBC,DAM=AMN=DNM=90,四边形AMND是矩形,AM=DN,AB=CD=13,RtABMRtDCN,BM=CN,AD=11,BC=21,BM=CN=5,AM=12,在RtABM中,sinB=(2)如图2中,连接AC在RtACM中,AC=20,PB=PA,BE=EC,PE=AC=10,的长=5(3)如图3中,当点Q落在直线AB上时,EPBAMB,=,=,PB=如图4中,当点Q在DA的延长线上时,作PHAD交DA的延长线于H,延长HP交BC于G设PB=x,则AP=13xADBC,B=HAP,PG=x,
22、PH=(13x),BG=x,PGEQHP,EG=PH,x=(13x),BP=综上所述,满足条件的PB的值为或【点睛】本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.22、见解析【解析】根据角平分线的定义可得ABF=CBF,由已知条件可得ABF+AFB=CBF+BED=90,根据余角的性质可得AFB=BED,即可求得AFE=AEF,由等腰三角形的判定即可证得结论【详解】BF 平分ABC,ABF=CBF,BAC=90,ADBC,ABF+AFB=CBF+BED=90,AFB=BED,AEF=BED,AFE=AEF,AE=AF【点睛】本题考查了等腰三角
23、形的判定、直角三角形的性质,根据余角的性质证得AFB=BED是解题的关键23、原不等式组的解集为4x1,在数轴上表示见解析【解析】分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案详解:解不等式,得x4,解不等式,得x1,把不等式的解集在数轴上表示如图,原不等式组的解集为4x1点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键24、(1)证明见解析;(2)4.1【解析】试题分析:(1)由BECO,推出OCB=CBE,由OC=OB,推出OCB=OBC,可得CBE=CBO;(2)在RtCDO中,求出OD,由OCBE,可得,由此即可解决问题;试题解析:(1)证明:DE是切线,OCDE,BECO,OCB=CBE,OC=OB,OCB=OBC,CBE=CBO,BC平分ABE(2)在RtCDO中,DC=1,OC=0A=6,OD=10,OCBE,EC=4.1考点:切线的性质