山东省济宁院附中2023年中考数学最后冲刺模拟试卷含解析.doc

上传人:lil****205 文档编号:88000758 上传时间:2023-04-19 格式:DOC 页数:14 大小:721.50KB
返回 下载 相关 举报
山东省济宁院附中2023年中考数学最后冲刺模拟试卷含解析.doc_第1页
第1页 / 共14页
山东省济宁院附中2023年中考数学最后冲刺模拟试卷含解析.doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《山东省济宁院附中2023年中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省济宁院附中2023年中考数学最后冲刺模拟试卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若是新规定的某种运算符号,设ab=b 2

2、 -a,则-2x=6中x的值()A4B8C2D-22如图所示的几何体的俯视图是( )ABCD3如图,ABC中,C=90,D、E是AB、BC上两点,将ABC沿DE折叠,使点B落在AC边上点F处,并且DFBC,若CF=3,BC=9,则AB的长是( ) AB15CD94如图,AD为ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是()ADC=DEBAB=2DECSCDE=SABCDDEAB5对于命题“如果1+190,那么11”能说明它是假命题的是()A150,140B140,150C130,160D11456满足不等式组的整数解是()A2B1C0D17不等式42x0的解集在数轴上

3、表示为( )ABCD8如图,已知ABC中,C=90,若沿图中虚线剪去C,则1+2等于( )A90B135C270D3159如图是婴儿车的平面示意图,其中ABCD,1=120,3=40,那么2的度数为( )A80B90C100D10210在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A最高分90B众数是5C中位数是90D平均分为87.5二、填空题(共7小题,每小题3分,满分21分)11如图,正比例函数y=kx(k0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则ABC的面积等于_12如图,AC、BD为圆O的两条垂直的直径,动

4、点P从圆心O出发,沿线段线段DO的路线作匀速运动设运动时间为t秒,APB的度数为y度,则下列图象中表示y与t的函数关系最恰当的是( )A B C D13一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为_14计算:6=_15对于任意不相等的两个实数,定义运算如下:,如32.那么84 16不等式组的非负整数解的个数是_17计算的结果等于_三、解答题(共7小题,满分69分)18(10分)在平面直角坐标系中,ABC的三个顶点坐标分别为A(2,4),B(3,2),C(6,3)画出ABC关于轴对称的A1B1C1;以M点为位似中心,在网格中画出A1B1C1的位似

5、图形A2B2C2,使A2B2C2与A1B1C1的相似比为2:119(5分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数的图象交于点求反比例函数的表达式和一次函数表达式;若点C是y轴上一点,且,直接写出点C的坐标20(8分)如图,一次函数y=k1x+b(k10)与反比例函数的图象交于点A(-1,2),B(m,-1)求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使ABP为等腰三角形,请你直接写出P点的坐标21(10分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣

6、爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:根据统计图所提供的倍息,解答下列问题:(1)本次抽样调查中的学生人数是多少人;(2 )补全条形统计图;(3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;(4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率22(10分)如图,ABC中,AB=AC,以AB为直径的O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F(1)求证:EF是O的切线;(2)若F=30,BF=3,求弧AD的长2

7、3(12分)如图,在平面直角坐标系中,直线y1=2x2与双曲线y2=交于A、C两点,ABOA交x轴于点B,且OA=AB求双曲线的解析式;求点C的坐标,并直接写出y1y2时x的取值范围24(14分)如图,在ABC中,ABC=90(1)作ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与O的位置关系,直接写出结果参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】解:由题意得:,x=1故选C2、B【解析】根据俯视图是从上往下看得到的图形解答即可.【详解】从上往下看得到的图形是:故选B.【点睛】本题

8、考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线3、C【解析】由折叠得到EB=EF,B=DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长【详解】由折叠得到EB=EF,B=DFE,在RtECF中,设EF=EB=x,得到CE=B

9、C-EB=9-x,根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,EF=EB=5,CE=4,FDBC,DFE=FEC,FEC=B,EFAB,则AB=,故选C【点睛】此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键4、A【解析】根据三角形中位线定理判断即可【详解】AD为ABC的中线,点E为AC边的中点,DC=BC,DE=AB,BC不一定等于AB,DC不一定等于DE,A不一定成立;AB=2DE,B一定成立;SCDE=SABC,C一定成立;DEAB,D一定成立;故选A【点睛】本题考查的是

10、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键5、D【解析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子【详解】“如果1+190,那么11”能说明它是假命题为1145故选:D【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键6、C【解析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可【详解】 解不等式得:x0.5,解不等式得:x-1,不等式组的解集为-1x0.5,不等式组的整数解为0,故选C【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键7

11、、D【解析】根据解一元一次不等式基本步骤:移项、系数化为1可得【详解】移项,得:-2x-4,系数化为1,得:x2,故选D【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变8、C【解析】根据四边形的内角和与直角三角形中两个锐角关系即可求解.【详解】解:四边形的内角和为360,直角三角形中两个锐角和为90,1+2=360(A+B)=36090=270故选:C【点睛】此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360.9、A【解析】分析:根据平行线性质求出A,根据三角形内角和定理得出2=1801A,代入求

12、出即可详解:ABCD.A=3=40,1=60,2=1801A=80,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180.10、C【解析】试题分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(802+85+905+952)(2+1+5+2)=88.5.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据反比例函数的性质可判断点A与点B关于原点对称,则SBOC=SAOC,再利用反比例函数k的几何意义得到SAOC=3,则易得SABC=1【详解】双曲线y=与正比例函数y=kx的图象交于A,B两点,点A与点B关于原

13、点对称,SBOC=SAOC,SAOC=1=3,SABC=2SAOC=1故答案为112、C.【解析】分析:根据动点P在OC上运动时,APB逐渐减小,当P在上运动时,APB不变,当P在DO上运动时,APB逐渐增大,即可得出答案解答:解:当动点P在OC上运动时,APB逐渐减小;当P在上运动时,APB不变;当P在DO上运动时,APB逐渐增大故选C13、1.【解析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1点睛:本题为统计题,考查平

14、均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错14、3【解析】按照二次根式的运算法则进行运算即可.【详解】【点睛】本题考查的知识点是二次根式的运算,解题关键是注意化简算式.15、【解析】根据新定义的运算法则进行计算即可得.【详解】,84=,故答案为.16、1【解析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集【详解】解:解得:x,解得:x1,不等式组的解集为x1,其非负整数解为0、1、2、3、4共1个

15、,故答案为1【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解17、【解析】根据完全平方公式进行展开,然后再进行同类项合并即可.【详解】解: .故填.【点睛】主要考查的是完全平方公式及二次根式的混合运算,注意最终结果要化成最简二次根式的形式.三、解答题(共7小题,满分69分)18、(1)详见解析;(2)详见解析【解析】试题分析:(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)直接利用位似图形的性质得出对应点位置,进而得出答案;试题解析:(1)如图所示

16、:A1B1C1,即为所求;(2)如图所示:A2B2C2,即为所求;考点:作图-位似变换;作图-轴对称变换19、(1)y=,y=-x+1;(2)C(0,3+1 )或C(0,1-3).【解析】(1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;(2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标【详解】(1)双曲线过,将代入,解得:所求反比例函数表达式为:点,点在直线上,所求一次函数表达式为(2)由,可得:,又,或,或,【点睛】本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题此题难度适中,注意掌握数形结

17、合思想的应用20、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0)【解析】(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.【详解】(1)把A(-1,2)代入,得到k2=-2,反比例函数的解析式为B(m,-1)在上,m=2,由题意,解得:,一次函数的解析式为y=-x+1(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或

18、(0,0)【点睛】本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.21、(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4).【解析】(1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;(2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;(3)用2000乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;(4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解【详解】

19、(1)3030%=100,所以本次抽样调查中的学生人数为100人;(2)选”舞蹈”的人数为10010%=10(人),选“打球”的人数为100301020=40(人),补全条形统计图为:(3)2000=800,所以估计该校课余兴趣爱好为“打球”的学生人数为800人;(4)画树状图为:共有12种等可能的结果数,其中选到一男一女的结果数为8,所以选到一男一女的概率=【点睛】本题考查了条形统计图与扇形统计图,列表法与树状图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比22、(1)见解析;(2)2.【解析】证明:(1)连接OD,AB是直径,A

20、DB=90,即ADBC,AB=AC,AD平分BAC,OAD=CAD,OA=OD,OAD=ODA,ODA=CAD,ODAC,DEAC,ODEF,OD过O,EF是O的切线(2)ODDF,ODF=90,F=30,OF=2OD,即OB+3=2OD,而OB=OD,OD=3,AOD=90+F=90+30=120,的长度=.【点睛】本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题也考查了弧长公式23、(1);(1)C(1,4),x的取值范围是x1或0x1【解析】【分析】(1)作高线AC,根据等腰直角三角形

21、的性质和点A的坐标的特点得:x=1x1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论【详解】(1)点A在直线y1=1x1上,设A(x,1x1),过A作ACOB于C,ABOA,且OA=AB,OC=BC,AC=OB=OC,x=1x1,x=1,A(1,1),k=11=4,;(1),解得:,C(1,4),由图象得:y1y1时x的取值范围是x1或0x1【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大24、(1)见解析(2)相切【解析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可【详解】(1)如图所示:;(2)相切;过O点作ODAC于D点,CO平分ACB,OB=OD,即d=r,O与直线AC相切,【点睛】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出d=r是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁